Asterisk Documentation

Asterisk Development Team <asteriskteam@digium.com>

L HOME L 11
1.1 Asterisk 1.8 DOCUMENLALIONottt et et e e e e e e e 12
1.1 1 Getting Startedot 12
1.1.1.1 Precursors, Background and BUSINESSttt e et e 12
1.1.0. 1.0 ASEEriSK CONCEPLS . . ottt et e et e e e e e 12
1.1.1.2 Beginning ASteriSKot 15
1.1.12.2.2 Installing ASteriSK . . . ot 15
1.1.1.2.2 Installing Asterisk From SOUICEottt e e e e e e e e e e 17
1.1.1.2.3 Getting Started wWith ASteriSKo 27
1.1.1.2.4 Asterisk ArChiIteCtUre 33
1.1.1.2.5 Asterisk Configuration FIleS e 38
1.1.1.2.6 Basic PBX FUNCHONAlItY e e 41
1.1.1.2.7 Dialplan Fundamentals e 45
1.1.1.2.8 Auto-attendant and IVR MENUSot e 53
1.1.1.2.9 Dialplan ArChiteCIUIrE o e e e e e e e e e 58
1.1.2 Configuration and OPerationt e 69
1.1.2.1 Asterisk Calendaringottt 69
1.1.2.1.1 Configuring Asterisk Calendaring i 69
1.1.2.1.2 Calendaring Dialplan FUNCHIONS e e e e e e 70
1.1.2.1.3 Calendaring Dialplan EXamples 71
1.1.2.2 Asterisk Channel DIiVErS e 72
1.1.2.2.1 Inter-Asterisk eXchange protocol, version 2 (IAX2)t e 72
1122 2 MISDIN o 74
1.1.2.2.3 L0cal Channel 79
1.1.2.2.4 Mobile Channel 86
1.1.2.3 Asterisk Configuration e e 91
1.1.2.3.1 General Configuration Information 91
1.1.2.3.2 Database Support Configuration 100
1.1.2.3.3 Privacy Configurationt e e e 102
1.1.2.4 Asterisk Extension Language (AEL) 108
1.1.2.4.1 Introduction 10 AEL oo 108
1.1.2.4.2 AEL and Asterisk in a Nutshell 109
1.1.2.4.3 Getting Started With AEL 110
1.1.2.4.4 AEL DEDUGOING - . . o ottt e e et e e e e e e e e e e e 110
1.0.2.4.5 ADOUL BBl ParSE . .o e
1.1.2.4.6 General Notes about AEL SYNtAXottt e e e e e e 111
1.1.2.4.7 AEL KEYWOITS . oottt ettt et e e e e e e e e e e e e 111
1.1.2.4.8 AEL Procedural Interface and Internals 112
1.1.2.4.9 AEL EXample USAgES oottt et e e e e 117
1.1.2.4.00 AEL EXAMPIES . . oot 124
1.1.2.4.11 AEL Semantic CheCks 125
1.1.2.4.12 Differences with the original version of AEL i e e e 126
1.1. 2423 AEL HINtS @Nd BUGSottt it e e e e e e e e e e e e e 126
1.1.2.4.14 The FUull POWEr Of AEL . ..ot e e e e e e e e e e e 127
1.1.2.5 Asterisk Manager Interface (AMI)o 127
1.1.2.5.1 The Asterisk Manager TCP 1P APl . .. e 127
1.1.2.5.2 AMI COmMMANA SYNTAX .« o . o vttt ettt e e e e e e e e e e e 128
1.1.2.5.3 AMI Manager COMMANGSottt ettt et e e e e et e e e 128
1.1.2.5.4 AMI EXAMPIES . oottt e 128
1.1.2.5.5 Ensuring all modules are loaded with AMI 128
1.1.2.5.6 Device Status Reports With AMI e e 129
1.1.2.5.7 Some Standard AMI Headers 129
1.1.2.5.8 Asynchronous Javascript Asterisk Manger (AJAM) 131
1.1.2.6 ASEEISK QUEBUES . . .ottt ittt e e e e e e 132
1.1.2.6.1 Configuring Call QUEUES ottt e e e e e e e 132
1.1.2.6.2 QUEUE LOOS . ..ottt 139
1.1.2.7 Asterisk Security Framework 140
1.1.2.7.1 Security Framework OVEIVIEWttt e e e e e 140
1.1.2.7.2 Security Event GENErationttt e e e e 141
1.1.2.7.3 Asterisk Security EVENt LOGOETottt et e e e e e e 141
1.1.2.7.4 Security EVENES 10 LOQ o oottt e e 141
1.1.2.7.5 Security Log File FOrmMat 143
1.1.2.8 Asterisk Sounds Packageso 144
1.1.2.8.1 Getting the Sounds TOOISot 144
1.1.2.8.2 About the Sounds TOOIS 144
1.1.2.9 Call Completion Supplementary Services (CCSS)ottt e e 145
1.1.2.9. 1 CCSS GlOSSAIY . .ottt ettt e e et e e e e e 146

1.1.2.9.2 The Call Completion ProCesSot e e e 146

1.1.2.9.3 Call Completion INfo and TIPS oottt e e 149

1.1.2.9.4 Generic Call Completion Example 150
1.1.2.10 Call Detail Records (CDR)ttt e e e e e e e 151
1.1.2.10.1 CDR APPlICAtIONS . . o .ttt e e 151
1.1.210.2 CDR FIelas . ..ottt 151
1.1.2.10.3 CDR Variables 151
1.1.2.10.4 CDR Storage Backends 152
1.1.2.11 Calling using GOOgIe 160
1.1.2.12 Channel Event Logging (CEL) it e e e 164
1.1.2.12. 1 CEL DeSIgN GOAlS . . .o ottt e et e e e e e e e e 164
1.1.2.12.2 CEL Events and Fields 183
1.1.2.12.3 CEL Applications and FUNCLIONSttt e et e e 184
1.1.2.12.4 CEL Configuration Files 185
1.1.2.12.5 Generating Billing Information from CEL 185
1.1.2.12.6 CEL Storage Backends 185
1.1.2.13 Channel Variables 194
1.1.2.13. 1 Parameter QUOLING oottt ettt e e e e e e e e e e e e 194
1.1.2.13.2 AboUut Varniables 194
1.1.2.13.3 Variable Inheritance 195
1.1.2.13.4 Selecting Characters from Variables 195
1.1.2.13.5 EXPrESSIONS . o oottt ittt e e e e e e e e e e 196
1.1.2.13.6 Asterisk standard channel variables 204
1.1.2.14 Distributed Universal Number Discovery (DUNDI)ttt e e e e e e e 209
1.1.2.14.1 Introduction t0 DUNDIo e 209
1.1.2.14.2 DUNDIQUERY and DUNDIRESULT e e e 209
1.1.2.14.3 DUNDI Peering AgreemeNtottt et et e e e e e e e e e e e 209
1.1.2.15 E.164 NUmber Mapping (ENUM)o e 221
1.1.2.15.1 The ENUMLOOKUP Dialplan FUNCLION e e 221
L2 A6 FRAIUIES .. .ttt ittt et ettt e e e e e e e e e e e e e 225
1.1.2.16.1 Asterisk AppliCationNSot 226
1.1.2.16.2 Asterisk Call Flles 229
1.1.2.16.3 Asterisk Command Line Interface 231
1.1.2.16.4 Asterisk Manager Interface (AMI) Changesttt 232
1.1.2.16.5 BUilding QUEBUES oottt e e e 245
1.1.2.16.6 Call Completion Supplementary SErVICESttt e 259
1.1.2.06.7 Call QUEBUES . . o\ oottt e 259
1.1.2.16.8 Channel DIVEISo 260
1.1.2.16.9 Database TranSacClioNSttt et et e e e e e e 263
1.1.2.16.10 Distributed Device State With AlS 263
1.1.2.16.11 Distributed Device State with XMPP PubSub 269
1.1.2.16.12 DUND:i - Distributed Universal NUMber DISCOVEIYttt et et 276
1.1.2.16.13 External IVR INterface 292
1.1.2.16.14 Followme - Realtimeot 295
1.1.2.16. 15 IAX2 SECUNLY . . oo ittt e e e e e e e e e 296
1.1.2.16.16 Jabber in ASteriSKo 303
1.1.2.16.17 Jingle in AStEriSK . . .ot 305
1.1.2.16.18 LDAP Realtime DriVEr e e 305
1.1.2.16.19 Open Settlement Protocol (OSP) User GUIdEttt e e et e et e 306
1.1.2.16.20 PSTN CONNECHIVILY . . . o\ttt e 320
1.1.2.16.21 Real-time Text (T.140)ttt ettt e e e e e e e e e e 325
1.1.2.16.22 RTP Packetization e 327
1.1.2.16.23 Simple Message Desk Interface (SMDI) Integration 328
1.1.2.16.24 Simple Network Management Protocol (SNMP) SUPPOItttt e 330
1.1.2.16.25 SIP RetransSmiSSIONS oottt et e e e e 349
1.1.2.16.26 SIP TLS TranS PO . . .ottt et e et e e e e e e e e e e e e e e e 351
1.1.2.16.27 Speech Recognition APl o 352
1.1.2.16.28 SQLite Tables o 357
1.1.2.16.29 Storing Voicemail in PostgreSQL via ODBCo e 360
1.1.2.16.30 TIMING INtEIACES oot e e e e e 370
1.1.2.16.31 Using the Hoard Memory Allocator with Asterisk e 372
1.1.2.16.32 VIide0 CONSOIE . . .ottt e 373
1.1.2.16.33 Video Telephonyo 377
1.1.2.17 Manipulating Party ID Information 377
1.1.2.18 Packet Loss Concealment (PLC)ottt ittt e e e e e e 384
1.1.2.18.1 PLC Background on Translation 384
1.1.2.18.2 PLC ResStrictions @and CAVEALSttt ittt e e e e e e e 385
1.1.2.18.3 Requirements for PLC USE it e e e e 385
112,084 PLC TIPS o« ettt ettt et e e e e e 385
1.1.2.19 Phone Provisioning in ASteriSKot e 386
1.1.2.19.1 Configuration of phoneprov.CoONf 386
1.1.2.19.2 Creating Phone Profiles 386
1.1.2.19.3 Configuration Of USErs.CONf e 387
1.1.2.19.4 Phone Provisioning Templatesttt e e e 388
1.1.2.19.5 Phone Provisioning, Putting it all together 389

1.1.2.20 Reference Information INtrodUCtion 390

1.1.2.20.1 License INformation i e 390

1.1.2.20.2 Important Security CONSIAErationsttt 391
1.1.2.20.3 Telephony Hardware e e e e e e e e 393
1.1.2.21 SeCUre Calls . ..ot 395
1.1.2.22 Shared Line AppearanCes (SLA) e 396
1.1.2.22.1 Introduction to Shared Line Appearances (SLA) 396
1.1.2.22.2 SLA ConfIgUIrationottt e e e e e e 396
1.1.2.22.3 SLA Configuration EXamples e 398
1.1.2.22.4 SLAand Call Handlingot 399
1.1.2.23 Short Message ServiCe (SMS) 400
1.1.2.23.1 Introduction t0 SMS . .. Lo o 400
1.1.2.23.2 SMS and exXtensions.CoONf 401
1.1.2.23.3 SMS Background 401
1.1.2.23.4 SMS DeliVEry REPOIS . . o oo ottt et e et e e e e e e e 402
1.1.2.23.5 SMS File FOrmMatso 402
1.1.2.23.6 SMS SUD AdAreSSo 403
1.1.2.23.7 SMS TermMiNOIOgY . . .o ottt et et e e e e e e e e 403
1.1.2.23.8 SMS Typical Use with Asterisk 403
1.1.2.23.9 USING SMSQ . . oo ottt ettt e e 404
1.1.2.24 VOICEMAIL . . oo 406
1.1.2.24.1 ODBC VoiCeMall STOrAGE ottt et et e e e e e e e e 406
1.1.2.24.2 IMAP Voicemail StOrageo\ttt et e 406
1.1.3 Asterisk Command ReferenCe 410
1132 AGECOMMANGS . ..ottt et et e e e et e e e e e 410
1.1.3.1.1 AGICommand_ANSWER 410
1.1.3.1.2 AGICommand_ASYNCAGI BREAK e 411
1.1.3.1.3 AGICommand_CHANNEL STATUS e e 411
1.1.3.1.4 AGICommand_CONTROL STREAM FILE e 412
1.1.3.1.5 AGICommand_DATABASE DELttt e e 413
1.1.3.1.6 AGICommand_DATABASE DELTREE e e 413
1.1.3.1.7 AGICommand_DATABASE GETttt et e e e e 414
1.1.3.1.8 AGICommand_DATABASE PUT e 414
1.1.3. 1.9 AGICOMMANd_EXECt 415
1.1.3.1.10 AGICOMMANd _GET DAT A ottt 415
1.1.3.1.11 AGICommand_GET FULL VARIABLE e e e 416
1.1.3.1.12 AGICommMand_GET OPTIONt e e e e e 417
1.1.3.1.13 AGICommand_GET VARIABLE 417
1.1.3.1.14 AGICOMMANd_GOSUBttt e 418
1.1.3.1.15 AGICommand_HANGUP 418
1.1.3.1.16 AGICOMMANd_NOOP 419
1.1.3.1.17 AGICommand_RECEIVE CHAR e e 419
1.1.3.1.18 AGICommMaNd_RECEIVE TEXTttt ettt e e e e e e 420
1.1.3.1.19 AGICommand_RECORD FILE 420
1.1.3.1.20 AGICommMaNd_SAY ALPHA ... 421
1.1.3.1.21 AGICOMMANA_SAY DATE . .ttt e e 421
1.1.3.1.22 AGICommand_SAY DATETIME e e 422
1.1.3.1.23 AGICOMMANA_SAY DIGITS ...t 423
1.1.3.1.24 AGICommand_SAY NUMBER 423
1.1.3.1.25 AGICommand_SAY PHONETIC e e e 424
1.1.3.1.26 AGICOMMANA_SAY TIMEt 424
1.1.3.1.27 AGICOommMand_SEND IMAGE e 425
1.1.3.1.28 AGICOMMANA_SEND TEXT ...ttt et et e e e e e 425
1.1.3.1.29 AGICommand_SET AUTOHANGUP e e e 426
1.1.3.1.30 AGICommand_SET CALLERIDttt e e e e 426
1.1.3.1.31 AGICommand_SET CONTEXTt e e e 427
1.1.3.1.32 AGICommand_SET EXTENSIONttt e e e e e 427
1.1.3.1.33 AGICOoMMaNnd_SET MUSIC e 428
1.1.3.1.34 AGICommand_SET PRIORITY e e e e 428
1.1.3.1.35 AGICommand_SET VARIABLE 429
1.1.3.1.36 AGICommand_SPEECH ACTIVATE GRAMMARt 429
1.1.3.1.37 AGICommand_SPEECH CREATE e e 430
1.1.3.1.38 AGICommand_SPEECH DEACTIVATE GRAMMAR e 430
1.1.3.1.39 AGICommand_SPEECH DESTROYttt ittt e e e e e 431
1.1.3.1.40 AGICommand_SPEECH LOAD GRAMMAR e 431
1.1.3.1.41 AGICommand_SPEECH RECOGNIZEt e e 432
1.1.3.1.42 AGICommand_SPEECH SET 432
1.1.3.1.43 AGICommand_SPEECH UNLOAD GRAMMARttt 433
1.1.3.1.44 AGICommand_STREAM FILE e e 433
1.1.3.1.45 AGICommand_TDD MODEt e 434
1.1.3.1.46 AGICOMMAaNd_VERBOSEt 434
1.1.3.1.47 AGICommand_WAIT FOR DIGIT e e e e 435
1.1.3.1.48 AGI Command Template Page 436
L1.1.3.2 AMI ACHONS . . oottt e e e 436
1.1.3.2.1 AMI Action Template Page 436

1.1.3.2.2 ManagerAction_AbsOIUtETIMEOUL oo e 437

1.1.3.2.3 ManagerAction_AgentLogoff 438

1.1.3.2.4 ManagerACHON_AQENTSottt e et e 438
1.1.3.2.5 ManagerACtioN_AGH 439
1.1.3.2.6 ManagerACtion_AOCMESSAQTEt vttt ettt et e e e e e e 439
1.1.3.2.7 ManagerACtiON _AIXIer . . 441
1.1.3.2.8 ManagerAction_Bridge 441
1.1.3.2.9 ManagerAction_Challenge 442
1.1.3.2.10 ManagerAction_ChangeMOnitort e e 443
1.1.3.2.11 ManagerAction_COmMmMANGttt ettt e e 443
1.1.3.2.12 ManagerAction_COreSetlingSottt it et e e e 444
1.1.3.2.13 ManagerAction_CoreShowChannels 444
1.1.3.2.14 ManagerACtioN_COreStatUS oottt et e e et e e e e e e 445
1.1.3.2.15 ManagerAction_CreateConfigttt 445
1.1.3.2.16 ManagerAction_DAHDIDIalOffhooK 446
1.1.3.2.17 ManagerAction_DAHDIDNDOff 446
1.1.3.2.18 ManagerAction_DAHDIDNDONttt et et e e e 447
1.1.3.2.19 ManagerAction_DAHDIHANGUDottt e e e e 447
1.1.3.2.20 ManagerAction_DAHDIRESIArt 448
1.1.3.2.21 ManagerAction_DAHDIShowChannels e 448
1.1.3.2.22 ManagerAction_DAHDITransier 449
1.1.3.2.23 ManagerAction_DataGetottt 449
1.1.3.2.24 ManagerAction_DBDeEl 450
1.1.3.2.25 ManagerAcCtion_DBDEITIEeot e e 451
1.1.3.2.26 ManagerAction_DBG et 451
1.1.3.2.27 ManagerACtioN DB PUL i e 452
1.1.3.2.28 ManagerACtioN_EVENLSo 452
1.1.3.2.29 ManagerAction_EXIENSIONSTAte 453
1.1.3.2.30 ManagerAction_GetConfigt e 454
1.1.3.2.31 ManagerAction_GetConfigISON 454
1.1.3.2.32 MAnagerACtION_GEIVAI ottt e et e e e e 455
1.1.3.2.33 ManagerACtion_HaNQUPot e e e e 455
1.1.3.2.34 ManagerAcCtion _|AXNEISIAlSottt 456
1.1.3.2.35 ManagerAction_|AXPeerliSt 456
1.1.3.2.36 ManagerACtioN_IAXPEEIS ottt 457
1.1.3.2.37 ManagerACtion_LAXIEgIStIYt 457
1.1.3.2.38 ManagerAction_JabberSend 458
1.1.3.2.39 ManagerAction_LiStCategori€Sottt ittt e e e 458
1.1.3.2.40 ManagerAction_LiStCOmMMAaNGSttt 459
1.1.3.2.41 ManagerAction_LocalOptimiZEAWAYottt et e et e e 459
1.1.3.2.42 ManagerACtioN_LOGINottt e 460
1.1.3.2.43 ManagerAction_Logoff e 461
1.1.3.2.44 ManagerAction_MailboxCoUNt 461
1.1.3.2.45 ManagerAction_MailboXStatust 462
1.1.3.2.46 ManagerAction_MeetmeLiStt e 463
1.1.3.2.47 ManagerAction_MeetmeMULE 463
1.1.3.2.48 ManagerAction_MeetmeUnNmUIEttt e e 464
1.1.3.2.49 ManagerAction_MixMonitOrMULE o 464
1.1.3.2.50 ManagerAction_ModuleCheck e 465
1.1.3.2.51 ManagerAction_ModuleLoad 465
1.1.3.2.52 ManagerAction_MONITOro 466
1.1.3.2.53 ManagerAction_OrigiNatettt e e e 467
1.1.3.2.54 ManagerACtion_Park 468
1.1.3.2.55 ManagerAction_ParkedCalls 469
1.1.3.2.56 ManagerAction_PauseMONItOrttt 469
1.1.3.2.57 ManagerACtioN_Pingt 470
1.1.3.2.58 ManagerAction_PlayDTMF e 470
1.1.3.2.59 ManagerAction_QUEUEAATttt e e 471
1.1.3.2.60 ManagerAction_QUEUELOGttt ittt e e e e e e e e e 472
1.1.3.2.61 ManagerAction_QUEUEPAUSE\ttt e e e e e e e 472
1.1.3.2.62 ManagerAction_QUeUEPENAItY 473
1.1.3.2.63 ManagerAction_QueueReload 474
1.1.3.2.64 ManagerAction_QUEUEREMOVE ittt ittt e ettt e e e 474
1.1.3.2.65 ManagerAction_QUEUERESELttt e 475
1.1.3.2.66 ManagerAction_QUEUERUIEt e e 475
1.1.3.2.67 ManagerACtioN_QUEBUESot ittt ettt e e e e e e e e e e 476
1.1.3.2.68 ManagerAction_QUEUESTALUSo\ttt ettt e e et e e e 476
1.1.3.2.69 ManagerAction_QUEUESUMMAIYt vttt et e et e e e e e e e e e e e et e et i e 477
1.1.3.2.70 ManagerAction_RedireCt 477
1.1.3.2.71 ManagerAction_Reload 478
1.1.3.2.72 ManagerAction_SendTeXtttt 479
1.1.3.2.73 MAnagerACtION_SEIVAT ottt et et e e e 479
1.1.3.2.74 ManagerAction_ShowDialPlan 480
1.1.3.2.75 ManagerAction_SIPNOtifY e e 480
1.1.3.2.76 ManagerACtioN_SIPPEEIS 481

1.1.3.2.77 ManagerAction_SIPqualifypeer 482

1.1.3.2.78 ManagerAction_SIPShOWPEEr 482

1.1.3.2.79 ManagerAction_SIPShOWIEgiStIYot e e e 483
1.1.3.2.80 ManagerAction_SKINNYJEVICES it e e e 483
1.1.3.2.81 ManagerAction_SKINNYIINES 484
1.1.3.2.82 ManagerAction_SKINNYShOWOEVICE e 484
1.1.3.2.83 ManagerAction_SKINNYShoWIINe 485
1.1.3.2.84 ManagerACtiON_STAtUSottt ettt et e e e 485
1.1.3.2.85 ManagerAction_StOPMONITOrot e e 486
1.1.3.2.86 ManagerAction_UnpauseMOonitort 487
1.1.3.2.87 ManagerAction_UpdateConfig 487
1.1.3.2.88 ManagerAction_USErEVENTt 488
1.1.3.2.89 ManagerAction_VoicemailUSersList 489
1.1.3.2.90 ManagerAction_WaitEVENt 489
1.1.3.3 Dialplan AppliCatioNSot 490
1.1.3.3.1 Application_AddQUeEUEMEMDIET e 490
1.1.3.3.2 ApPlication_AD S PIrOg ..ottt 491
1.1.3.3.3 Application_AgentLogin 491
1.1.3.3.4 Application_AgentMONItorOULGOING o . vttt et e e e et e e e e e 492
1.1.3.3.5 Application_AGI . . .o 493
1.1.3.3.6 Application_AIarmRECEIVETot e e 494
1.1.3.3.7 Application_AMD . . .ot 494
1.1.3.3.8 ApPlICAtION_ANSWET . . .o e 495
1.1.3.3.9 Application_AUthENTICAteot 496
1.1.3.3.10 Application_BackGround 497
1.1.3.3.11 Application_BackgroundDetectottt 498
1.1.3.3.12 Application_Bridge e 498
1.1.3.3.13 AppPliCatioN_BUSYot 499
1.1.3.3.14 Application_CallCompletionCancel e 500
1.1.3.3.15 Application_CallCompletioNREqUESEot 500
1.1.3.3.16 Application_CELGENUSEIEVENTottt e e e e e e e e e 501
1.1.3.3.17 Application_ChangeMonitor 501
1.1.3.3.18 Application_ChanlsAvail 502
1.1.3.3.19 Application_ChannelRedireCt 502
1.1.3.3.20 Application_ChanSPyottt e e 503
1.1.3.3.21 Application_ClearHash e 504
1.1.3.3.22 Application_ConfBridge 505
1.1.3.3.23 Application_CoNngestioNt e e 506
1.1.3.3.24 Application_ContinueWNhile 506
1.1.3.3.25 Application_ControlPlayback 507
1.1.3.3.26 Application_DAHDIACCEPtR2CaAll 508
1.1.3.3.27 Application_DAHDIBArgettt 508
1.1.3.3.28 Application_DAHDIRAS 509
1.1.3.3.29 Application_DAHDISCANo 509
1.1.3.3.30 Application_DAHDISendCallreroutingFacility e 510
1.1.3.3.31 Application_DAHDISendKeypadFacility 510
1.1.3.3.32 Application_DateTimettt e 511
1.1.3.3.33 Application_DBdel 511
1.1.3.3.34 Application_DBAelree 512
1.1.3.3.35 Application_DeadAGI 513
1.1.3.3.36 Application_Dial 514
1.1.3.3.37 Application_DIiCtate e 516
1.1.3.3.38 AppPlicatioN_DIr€CIOTY oottt e e e e 517
1.1.3.3.39 Application_DIS A . . 518
1.1.3.3.40 Application_DumpChan 519
1.1.3.3.41 Application_EAGIo 519
1.1.3.3.42 Application_ECNOo 520
1.1.3.3.43 Application_EndWhile 521
1.1.3.3.44 AppPliCationN_EXECo 521
1.1.3.3.45 Application_EXeCH 522
1.1.3.3.46 Application_EXeCHTIMe 522
1.1.3.3.47 Application_EXitWhile 523
1.1.3.3.48 Application_EXIENSPY . . oottt 524
1.1.3.3.49 Application_ExternallVR 525
1.1.3.3.50 Application_Festival e e e 526
1.1.3.3.51 Application_Flash 526
1.1.3.3.52 Application_FolloWMeo 527
1.1.3.3.53 Application_FOrkCDR 528
1.1.3.3.54 Application_GetCPEID 529
1.1.3.3.55 Application_GOSUD e 530
1.1.3.3.56 Application_GOsSUDIf 530
1.1.3.3.57 ApPlICAtION_GOtOottt e 531
1.1.3.3.58 Application_Gotolf 532
1.1.3.3.59 Application_GotolTime e e 533
1.1.3.3.60 Application_HanQUD 534

1.1.3.3.61 Application_IAX2PrOVISIONot 534

1.1.3.3.62 Application_ICES 535

1.1.3.3.63 Application_IMpOortVar 535
1.1.3.3.64 Application_INComplete 536
1.1.3.3.65 Application_IVRDEMOottt 537
1.1.3.3.66 Application_JabberJoin 537
1.1.3.3.67 Application_JabberLeave 538
1.1.3.3.68 Application_JabberSend 538
1.1.3.3.69 Application_JabberSendGroupt 539
1.1.3.3.70 Application_JabberStatus 539
1.1.3.3. 71 Application_JACK . . 540
1.1.3.3.72 ApPlICAtioON_LOG . ..ottt 541
1.1.3.3.73 ApPliCatiON_IMACIOottt e e e e 541
1.1.3.3.74 Application_MacroEXCIUSIVE 542
1.1.3.3.75 Application_MaCrOEXItt 543
1.1.3.3.76 Application_MacCrolf 544
1.1.3.3.77 Application_MailboXEXIStSttt e 544
1.1.3.3.78 Application_MeetMe e 545
1.1.3.3.79 Application_MeetMeAdMIN 546
1.1.3.3.80 Application_MeetMeChannelAdmin e 547
1.1.3.3.81 Application_MeetMeCOUNLt e e 548
1.1.3.3.82 Application_Milliwatto 549
1.1.3.3.83 Application_MINIVMACCMESS oo e e 549
1.1.3.3.84 Application_MinivmDelete 550
1.1.3.3.85 Application_MInNIVINGIEeL e e e 550
1.1.3.3.86 Application_MinivIMWWV I 551
1.1.3.3.87 Application_MinivmNOLify 552
1.1.3.3.88 Application_ MINIVMRECOIT e e 5563
1.1.3.3.89 Application_MIXMORNITOro 554
1.1.3.3.90 Application_MONItOro 554
1.1.3.3.91 Application_MOrSECOOEttt et e e e 555
1.1.3.3.92 Application_IMPEPIayer 556
1.1.3.3.93 Application M St e 556
1.1.3.3.94 Application_MusicONHOIdo 557
1.1.3.3.95 Application_INBSCAEottt e 558
1.1.3.3.96 Application_INOCDR e e 558
1.1.3.3.97 ApPlication_INOOD . ..ottt 559
1.1.3.3.98 Application_ODBC_COMIMILottt et e e e e e e e e e e e e e e 559
1.1.3.3.99 Application_ODBC_Rollback 560
1.1.3.3.100 Application_ODBCFINISNo 560
1.1.3.3.101 Application_OFigiNatettt e e e e e e e 561
1.1.3.3.102 Application_OSPAULth 562
1.1.3.3.103 Application_OSPFINISN 562
1.1.3.3.104 Application_OSPLOOKUDot 563
1.1.3.3.105 Application_OSPNEXt e 565
1.1.3.3.106 AppPliCatioN_Pageot 566
1.1.3.3.107 Application_Park 567
1.1.3.3.108 Application_ParkANdANNOUNCEottt e e e e e e e e e e 568
1.1.3.3.109 Application_ParkedCall 568
1.1.3.3.110 Application_PauseMONitort e 569
1.1.3.3.111 Application_PauseQueueMember 570
1.1.3.3.112 Application_PiCKUDot 570
1.1.3.3.113 Application_PickupChan 571
1.1.3.3.114 Application_Playback 572
1.1.3.3.115 Application_PlayTONESottt e e e 572
1.1.3.3.116 Application_PrivaCyManagerttt 573
1.1.3.3.117 Application_ProCeedingttt e e 574
1.1.3.3.118 AppPliCatioN _PrOgreSS . ..t ittt e e 574
1.1.3.3.119 Application_QUEUE oottt ittt e e e e e e e e e 575
1.1.3.3.120 Application_QUEUELOQGottt et e e e 576
1.1.3.3.121 Application_RaiSEEXCEPLIONot 577
1.1.3.3.122 Application_Read 577
1.1.3.3.123 Application_ReadEXIENo 578
1.1.3.3.124 Application_ReadFile 579
1.1.3.3.125 Application_RECEIVEFAXttt e 579
1.1.3.3.126 Application_RECOI 580
1.1.3.3.127 Application_RemoveQueueMember 581
1.1.3.3.128 Application_ReSEetCDR 582
1.1.3.3.129 Application_RetryDial 582
1.1.3.3.130 Application_RetUINo e 583
1.1.3.3.131 Application_RINGING oot 584
1.1.3.3.132 Application_SayAlpha 584
1.1.3.3.133 Application_SayCountedAd]t 585
1.1.3.3.134 Application_SayCountedNOUNttt e e 586
1.1.3.3.135 Application_SayCoUntPL 586

1.1.3.3.136 Application_SayDigitSottt 587

1.1.3.3.137 Application_SayNUMDEr 588

1.1.3.3.138 Application_SayPhonetiC 588
1.1.3.3.139 Application_SayUniXTImMeEttt e e e e e e e 589
1.1.3.3.140 Application_SendDTMFE 590
1.1.3.3.141 Application_SendelRaxt e 590
1.1.3.3.142 Application_SendRAX 591
1.1.3.3.143 Application_SendiMaget 592
1.1.3.3.144 Application_SendTeXt 592
1.1.3.3.145 Application_SendURL 593
1.1.3.3.146 AppliCation_Seto 594
1.1.3.3.147 Application_SetAMAFIAgSot 595
1.1.3.3.148 Application_SetCallerPres 595
1.1.3.3.149 Application_SetMusicONHOId 596
1.1.3.3.150 Application_SIPAdAHEadEr 596
1.1.3.3.151 Application_SIPDtMIMOGEo 597
1.1.3.3.152 Application_SIPRemMOVEHEaAEr e 598
1.1.3.3.153 Application_SKel 599
1.1.3.3.154 Application_SLASIAtIONo\t 599
1.1.3.3.155 Application_SLATIUNKo e e e e e e 600
1.1.3.3.156 Application_SMS . . . 601
1.1.3.3.157 Application_SoftHanNQUPot 601
1.1.3.3.158 Application_SpeeChActivateGrammarttt e 602
1.1.3.3.159 Application_SpeechBackgroundttt 602
1.1.3.3.160 Application_SpPeeChCreatettt e e e e 603
1.1.3.3.161 Application_SpeechDeactivateGrammarttt e et e 604
1.1.3.3.162 Application_SPeeChDESIIOYttt ettt e e e 604
1.1.3.3.163 Application_SpeechLoadGrammarttt 605
1.1.3.3.164 Application_SpeechProcessingSouUNdttt e 605
1.1.3.3.165 Application_SpeechStart 606
1.1.3.3.166 Application_SpeechUnloadGrammarttt 606
1.1.3.3.167 Application_StackPoOp 607
1.1.3.3.168 Application_StartMusiCONHOIA 607
1.1.3.3.169 Application_StopMiXMONItOro e 608
1.1.3.3.170 Application_StopMONItOro 608
1.1.3.3.171 Application_StopMusSiCONHOIAo e 609
1.1.3.3.172 Application_StopPlayTOoNes 609
1.1.3.3.173 AppPlication_ Sy Stem . . o 610
1.1.3.3.174 Application_TestClENnt e 610
1.1.3.3.175 Application_TeStSeIVEr it 611
1.1.3.3.176 Application_Transfer 611
1.1.3.3.077 ApPliICatioN_TrYEXEC ..\ttt e e e e e 612
1.1.3.3.178 Application_TrySyStem e e 613
1.1.3.3.179 Application_UnpauseMOnitor 613
1.1.3.3.180 Application_UnpauseQuUeueMember 614
1.1.3.3.181 Application_USErEVENt 615
1.1.3.3.182 Application_Verbose 615
1.1.3.3.183 Application_VMAULhENtiCAte e 616
1.1.3.3.184 Application_VMSayNamettt e 616
1.1.3.3.185 Application_VoiceMail e 617
1.1.3.3.186 Application_VoiceMailMain 618
1.1.3.3.187 Application_Walt e e 619
1.1.3.3.188 Application_WaitEXIEN 619
1.1.3.3.189 Application_WaitFOrNOISEo 620
1.1.3.3.190 Application_WaitFOrRINGt e 621
1.1.3.3.191 Application_WaitFOorSilencet 621
1.1.3.3.192 Application_WaitMusicONHOId 622
1.1.3.3.193 Application_WaitUntil 623
1.1.3.3.194 Application_While 624
1.1.3.3.195 Application_Zapateller 624
1.1.3.3.196 Dialplan Application Template Page 625
1.1.3.4 Dialplan FUNCHONSot e et e e e e e e 625
1.1.3.4.1 Dialplan Function Template Pagettt e 625
1.1.3.4.2 FUNCtioN_AES DECRY PT . .ot 626
1.1.3.4.3 Function_AES _ENCRY PT 627
1.1.3. 4.4 FUNCHON_AGC . ..ttt e e e 627
1.1.3.4. 5 FUNCHON _AGENT . oo 628
1.1.3.4.6 FUNCHON _ARR AY . .o 628
1.1.3.4.7 FUNCHON_AST_CONFIG ... e e e e e 629
1.1.3.4.8 Function_AUDIOHOOK _INHERIT e e e 629
1.1.3.4.9 Function_BASEBA_DECODEttt 631
1.1.3.4.10 Function_BASEB4_ENCODEt 631
1.1.3.4. 11 Function_BLACKLIST ..o 632
1.1.3.4.12 Function_CALENDAR _BUSY 632
1.1.3.4.13 Function_CALENDAR _EVENT ... e 633

1.1.3.4.14 Function_CALENDAR _QUERY 633

1.1.3.4.15 Function_CALENDAR_QUERY _RESULT e 634

1.1.3.4.16 Function_CALENDAR _WRITE e e e e e e 635
1.1.3.4.17 Function_CALLCOMPLETION ... e e e e e e e 635
1.1.3.4.18 FUNCiON_CALLERID e 636
1.1.3.4.09 Function_CALLERP RES e e e 637
1.1.3.4.20 FUNCHON_CDR . . .ot e e e e e 638
1.1.3.4.21 FuNction_CHANNEL e e e 640
1.1.3.4.22 Function_CHANNELS 641
1.1.3.4.23 Function_CHECKSIPDOMAIN . ..o e e e e e e e e 641
1.1.3.4.24 Function_CONNECTEDLINE e e e e 642
1.1.3.4.25 FUnction_CSV_QUOTE\ttt e e e e e 643
1.1.3.4.26 FUNCHON _CUT ..o e e e e e e e e e 644
1.1.3.4.27 FUNCHON DB 644
1.1.3.4.28 FuNction_DB_DELETE i e e e e 645
1.1.3.4.29 FUNCHiON_DB_EXIST S . ..o 645
1.1.3.4.30 FUNCHON_DECt e e e e e e 646
1.1.3.4.31 FUNCtiON_DENOISE e e e e 647
1.1.3.4.32 Function_DEVICE _STATEt e e e e e e 647
1.1.3.4.33 FUNCiON_DIALGROUP ..o e e 648
1.1.3.4.34 Function_DIALPLAN _EXIST S ..t e 649
1.1.3.4.35 Function_DUNDILOOKUP e e e e e e e e 649
1.1.3.4.36 Function_DUNDIQUERY e e e 650
1.1.3.4.37 Function_DUNDIRESULTt e e e e e e 651
1.1.3.4.38 Function_ENUMLOOKURP e 651
1.1.3.4.39 Function_ENUMQUERY 652
1.1.3.4.40 Function_ENUMRESULT e e e e 652
1.1.3.4. 41 FUNCHiON_ENV . 653
1.1.3.4.42 FUNCHON _EV AL .o e e e 653
1.1.3.4.43 Function_EXCEPTION e 654
1.1.3.4.44 FUNCHON_EXIST S . . e e 655
1.1.3.4.45 Function_EXTENSION _STATE e e e 655
1.1.3.4.46 FUNCHON _FAXO P T e e e e e e 656
1.1.3.4.47 Function_FIELDNUM e e e e e 657
1.1.3.4.48 FUNCHON_FIELD QY .ottt e e e e e e e e e 657
1.1.3.4.49 FUNCHON _FILE . . .o 658
1.1.3.4.50 Function_FILE_COUNT _LINE e e e e e e 660
1.1.3.4.51 Function_FILE _FORMAT . .. e e e e e e 661
1.1.3.4.52 FUNCHON_FILTER . . .o e e e e e e e e e e 661
1.1.3.4.53 Function_FRAME _TRACEt e e e e e e e 662
1.1.3.4.54 FUNCHON_GLOBAL e e e e e e 663
1.1.3.4.55 FUNCHON_GROUP ... e e 663
1.1.3.4.56 FUNCtion_GROUP _COUNT e e e e e e e e 664
1.1.3.4.57 Function_GROUP _LIST ... e 664
1.1.3.4.58 Function_GROUP_MATCH_COUNT . ..ottt et e e e 665
1.1.3.4.59 FUNCHON _HASH . .o 665
1.1.3.4.60 FUNCtion_HASHKEY S e e e 666
1.1.3.4.61 FUNCHON _HINT .. 667
1.1.3.4.62 FUNCHON_IAXPEER 667
1.1.3.4.63 FUNCHON _IAXV AR 668
1.1.3.4.64 FUNCHON_ICONY .. e 668
1.1.3.4.85 FUNCHON _IF .o 669
1.1.3.4.66 FUNCtion_IFMODULE e e e 669
1.1.3.4.67 FUNCHON _IFTIME .. . e e e e e e e 670
1.1.3.4.68 FUNCHON _IMP OR T . .. e e e e 670
1.1.3.4.69 FUNCHON _INC e e e e e e 671
1.1.3.4.70 FUNCHON_ISNULLo e e e e 671
1.1.3.4.71 Function_JABBER _RECEIVE 672
1.1.3.4.72 Function_JABBER _STATUS 673
1.1.3.4.73 Function_KEY P ADHASH 673
113,474 FUNCHON_LEN ..o e e 674
1.1.3.4.75 FUNCiON_LISTFILTERo e e e e e e e e e e e e 674
1.1.3.4.76 FUNCHON_LOC AL ..t e e e e 675
1.1.3.4.77 Function_LOCAL _PEEK 676
1.1.3.4.78 FUNCHON_LOCK ... e e 676
1.1.3.4.79 Function_MAILBOX EXISTS ... e 677
1.1.3.4.80 Function_MASTER _CHANNEL e e e e e e 677
1.1.3.4. 8L FUNCHON _MATH .. 678
1.1.3.4.82 FUNCHON _ MDD . . . e 678
1.1.3.4.83 Function_MEETME _INFO e e e e e e e e e e e 679
1.1.3.4.84 Function_MINIVMAC COUNT ... e e e e e e e e e e 680
1.1.3.4.85 Function_MINIVMCOUNTER e e e e e e e e e e 680
1.1.3.4.86 FUNction_MUTEAUDIO e e e e e e e e 681
1.1.3.4.87 FUNCHON_ODBC . . .ottt ettt e e e e e e e e e e e 682
1.1.3.4.88 FUNCtiON_ODBC_FETCH e e e e e e 682

1.1.3.4.89 Function_PASSTHRU 683

1.1.3.4.90 Function_PITCH _SHIFT e 683

1.1.3.4.91 FUNCHON _POP .. e e 684
1.1.3.4.92 Function_PP_EACH_EXTENSION e e e 685
1.1.3.4.93 Function_PP_EACH _USER e 686
1.1.3.4.94 FUNCHON_PUSH ... e e 686
1.1.3.4.95 Function_QUEUE _EXIST S ... it e e e 687
1.1.3.4.96 Function_QUEUE_MEMBER 687
1.1.3.4.97 Function_QUEUE_MEMBER_COUNT e e e e e 688
1.1.3.4.98 Function_QUEUE_MEMBER _LISTt e e e 688
1.1.3.4.99 Function_QUEUE_MEMBER _PENALTY ... e e e 689
1.1.3.4.100 Function_ QUEUE_VARIABLES e e 689
1.1.3.4.101 Function_ QUEUE_WAITING _COUNT ittt 690
1.1.3.4.2102 Function_QUOTEttt e 690
1.1.3.4.003 FUNCHON_RAN D ...ttt e e e e 691
1.1.3.4.104 Function_REALTIME e e e e 692
1.1.3.4.105 Function_REALTIME_DESTROY .. .ottt e e e e e 692
1.1.3.4.106 Function_REALTIME_FIELDttt e e e e e e e e e e e e e 693
1.1.3.4.107 Function_REALTIME _HASH e e e e 693
1.1.3.4.108 Function_REALTIME_STOREttt e e e e e e e e e 694
1.1.3.4.109 Function_REDIRECTING ittt e e e e e e 694
1.1.3.4.010 FUNCHON_REGEX e e 696
1.1.3.4.111 Function_REPLACE i 697
1.0.3.4. 002 FUNCHON _SET ..ottt e e e e e e e 697
1.1.3.4.013 FUNCHON_SHAL . . 698
1.1.3.4.114 Function_SHARED 699
1.1.3.4.015 FuncCtion_SHELL 699
1.0.3.4.006 FUNCHON_SHIFT . e e 700
1.1.3.4.117 Function_SIP_HEADER 701
1.1.3.4.118 Function_SIPCHANINFO e e e 701
1.1.3.4.119 Function_SIPPEER 702
1.1.3.4.120 FUNCHON_SMDI_IMSGottt e 703
1.1.3.4.121 Function_SMDI_MSG_RETRIEVE e 703
1.1.3.4.122 FUNCHON_SORT . .ottt et e e e e e e e e e e 704
1.1.3.4.123 FUNCHiON_SPEECH 705
1.1.3.4.124 Function_SPEECH_ENGINE e e e 705
1.1.3.4.125 Function_SPEECH_GRAMMAR i e e 706
1.1.3.4.126 Function_SPEECH_RESULTS _TYPE e 706
1.1.3.4.127 Function_SPEECH_SCOREttt e 707
1.1.3.4.128 Function_SPEECH _TEXTttt e e e e 707
1.1.3.4.129 FUNCioN_SPRINTE .. 708
1.1.3.4.130 FUNCON_SQL_ESC 708
1.1.3.4.131 Function_SRVQUERY 709
1.1.3.4.132 FUNCHON_SRVRESULT ... i e e 709
1.1.3.4. 033 FUNCHON _ ST AT .t e e e e e e 710
1.1.3.4.134 FUNCHiON_STRETIME . .. e e e 710
1.1.3.4.135 FuNnction_STRPTIME e e 711
1.1.3.4.136 FUNCHON_SYSINFO ...t e 712
1.1.3.4.137 Function_TESTTIME e 712
1.1.3.4.138 FUNCHON_TIMEOUT .. .ottt e e et et e e e e e e e e e e e e 713
1.1.3.4.139 FuNction_TOLOWER it e e 714
1.1.3.4.240 Function_TOUPPER i e e e e e 714
1.1.3.4.241 FuNCtion_TRYLOCK . ..t e 715
1.1.3.4.2142 Function_TXTCIDNAMEo e e 715
1.1.3.4.243 FUNCHON_UNLOCK .. e e 716
1.1.3.4.244 Function_UNSHIFT .. e e e 716
1.1.3.4.2145 Function_URIDECODEttt e e e e 717
1.1.3.4.146 Function_URIENCODE e e 717
1.1.3.4.247 Function_VALID_EXTEN e e e e e 718
1.1.3.4.148 FUNCHON_VERSION e 718
1.1.3.4.249 FuNction_VMCOUNT . .o e e e e e e e e e e 719
1.1.3.4.150 FUNCHON_VOLUME i e e 720

1.2 DEVEIOPIMENT . . oottt e e e e e 720
1.2.1 Policies and ProCeAUIESot e e e e e 720
1.2.0.1 COMMIE MESSAGES .+« v v vt et et et e e e e et e e e e e e e e 720
1.2.1.2 Issue Tracker Workflowo 722
1.2.1.3 ReVIEWD0ard USAgEottt e 725
12,2 DEbUGOING . . oot 727
1.2.2.1 Collecting Debug Information 727
1.2.2.2 Getting @ BaCKIraCe e 729
12,2, 3 ValgriNd . .o 734
1.2.3 SUDVEISION USAGE . . o .t ottt ettt et e e e e e e e e e e e e 735
1.2.4 Other Reference INformation e e 740
1.2.4.1 Asterisk Channel Data StOreSottt 740
1.2.4.2 Asterisk Soundfiles SUDMISSION PrOCESSo i e 741

1.2.4.3 Build System ArChiteCtUre 753

1.2.4.4 Coding GUIAEIINESo 753

1.2.4.5 JaNItOr PrOJECES . . o .t ottt 763
1.2.4.6 LOCKINg iN ASterisko 764
1.2.4.7 Measuring SIP Channel Performance i 768
L1.2.4.8 MOTUIES 769
1.2.5 CoNfIUBNCE TIPS . ottt et e e 770
12,8 ROAAMAD . . oot ittt et et e e 771
1.2.6.1 AstriDEVCON 2010ottt e e 773
1.2.6.2 Asterisk 1.8 PrOjeCtS . .. oottt 777
1.2.6.2.1 CCSS AIChItECIUIEo oot e e e e e e e e e 77
1.2.6.2.2 CODEC Bit EXPANSION oottt e e e et e e e e e e 777

1.2.6.3 ASterisk 1.10 PrOJECISo ottt e 778
1.2.6.3.1 chan_sip Transaction Support Proprosalt 778
1.2.6.3.2 Documentation IMProVEMENTSottt ettt e e e e e e e e e e e 780
1.2.6.3.3 Media Architecture Proposalt 782
1.2.6.3.4 Media Overhaul 802
1.2.6.3.5 SIP SeCUNtY EVENES . . .o e e e 803
1.2.6.3.6 T.38B GAEWAY ottt et et ettt e e e e 812

1.2.7 Asterisk Weekly Developer Conference Call 819
1.3 ASEEriSK VEISIONS . . o oottt e e e e 820

1.4 FOSDEM 2011 Open Source Telephony DeVIOOMottt e e e e e e e e e e e e 820

Home

This is the home of the official wiki for The Asterisk Project.

This is not the first wiki that has existed for Asterisk, but there are some significant things that are
different about this wiki than others. The most significant difference is that this wiki was created
to be the official source of documentation for the Asterisk project, maintained by the same
development team that manages the code itself. That means that we are committed to the
content being correct and up to date. To make that happen, editing the content is not open to the
general public. However, all Asterisk users are encouraged to participate by leaving comments
on pages.

If you are an Asterisk expert and would like to get involved with the development and
maintenance of content for the Asterisk wiki, contact Russell Bryant.

Thank you very much for your continued support of Asterisk!

Recently Updated

® FOSDEM 2011 Open Source Telephony Devroom
updated by Malcolm Davenport
(view change)
yesterday at 1:14 PM

® (Getting a Backtrace
updated by Leif Madsen
(view change)
yesterday at 10:40 AM

® Asterisk Weekly Developer Conference Call
updated by Bryan M. Johns
(view change)
Jan 18

® AsteriskDevCallWest.ics
attached by Bryan M. Johns
Jan 18

® AsteriskDevCallEast.ics
attached by Bryan M. Johns
Jan 18

® Subversion Usage
commented by Andrew Latham
Jan 14

® Commit Messages
commented by Andrew Latham
Jan 14

® Subversion Usage
commented by Andrew Latham
Jan 13

® Subversion Usage
commented by Paul Belanger
Jan 13

® Subversion Usage
commented by Andrew Latham
Jan 13

® Subversion Usage
commented by Andrew Latham
Jan 12

® chan_sip Transaction Support Proprosal
updated by Terry Wilson
(view change)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://wiki.asterisk.org/wiki/display/~russell/Home
https://wiki/display/~mdavenport
https://wiki/pages/diffpagesbyversion.action?pageId=11337806&selectedPageVersions=8&selectedPageVersions=7
https://wiki/display/~lmadsen
https://wiki/pages/diffpagesbyversion.action?pageId=5243139&selectedPageVersions=9&selectedPageVersions=8
https://wiki/display/~bmj
https://wiki/pages/diffpagesbyversion.action?pageId=11337917&selectedPageVersions=3&selectedPageVersions=2
https://wiki/pages/viewpageattachments.action?pageId=11337917&highlight=AsteriskDevCallWest.ics#Asterisk+Weekly+Developer+Conference+Call-attachment-AsteriskDevCallWest.ics
https://wiki/display/~bmj
https://wiki/pages/viewpageattachments.action?pageId=11337917&highlight=AsteriskDevCallEast.ics#Asterisk+Weekly+Developer+Conference+Call-attachment-AsteriskDevCallEast.ics
https://wiki/display/~bmj
https://wiki/display/~lathama
https://wiki/display/~lathama
https://wiki/display/~lathama
https://wiki/display/~pabelanger
https://wiki/display/~lathama
https://wiki/display/~lathama
https://wiki/display/~twilson@digium.com
https://wiki/pages/diffpagesbyversion.action?pageId=10649861&selectedPageVersions=4&selectedPageVersions=3

Jan 06

® Subversion Usage
commented by Paul Belanger
Jan 05

® Controlling the way Queues Call Agents
updated by Malcolm Davenport
(view change)
Jan 05

® Timing Interfaces
updated by Shaun Ruffell
(view change)
Jan 05

® More

Navigate space

Asterisk 1.8 Documentation

Getting Started

A Beginners Guide to Asterisk. Herein, you will find content related to installing Asterisk and
basic usage concepts.

Precursors, Background and Business

Discovering Asterisk

This section of the documentation attempts to explain at a high level what Asterisk is and does. It
also attempts to provide primers on the key technical disciplines that are required to successfully
create and manage Asterisk solutions. Much of the material in this section is optional and may be
redundant for those with a background in communications application development. For the other
99.9875% of the population, this is good stuff. Read on...

Asterisk Concepts

Asterisk is a very large application that does many things. It can be somewhat difficult to
understand, especially if you are new to communications technologies. In the next few chapters
we will do our best to explain what Asterisk is, what it is not, and how it came to be this way. This
section doesn't cover the technology so much as the concept. If you're already familiar with the
function of a telephony engine, feel free to jump ahead to the next section.

Asterisk as a Swiss Army Knife of Telephony

What Is Asterisk?

People often tend to think of Asterisk as an "open source PBX" because that was the focus of the
original development effort. But calling Asterisk a PBX is both selling it short (it is much more)
and overstating it (it can be much less). It is true that Asterisk started out as a phone system for
a small business (see the "Brief History" section for the juicy details) but in the decade since it
was originally released it has grown into a universal tool for building communications

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://wiki/display/~pabelanger
https://wiki/display/~mdavenport
https://wiki/pages/diffpagesbyversion.action?pageId=5243037&selectedPageVersions=2&selectedPageVersions=1
https://wiki/display/~sruffell@digium.com
https://wiki/pages/diffpagesbyversion.action?pageId=4260065&selectedPageVersions=2&selectedPageVersions=1
https://wiki/plugins/recently-updated/changes.action?theme=concise&pageSize=15&startHandle=com.atlassian.confluence.pages.Page-5243336&spaceKeys=AST&contentType=-mail,page,comment,blogpost,attachment,userinfo,spacedesc,personalspacedesc,status

applications. Today Asterisk powers not only IP PBX systems but also VolP gateways, call
center systems, conference bridges, voicemail servers and all kinds of other applications that
involve real-time communications.

Asterisk is not a PBX but is the engine that powers PBXs. Asterisk is not an IVR but is the
engine that powers IVRs. Asterisk is not a call center ACD but is the engine that powers
ACD/queueing systems.

Asterisk is to communications applications what the Apache web server is to web applications.
Apache is a web server. Asterisk is a communication server. Apache handles all the low-level
details of sending and receiving data using the HTTP protocol. Asterisk handles all the low level
details of sending and receiving data using lots of different communication protocols. When you
install Apache, you have a web server but its up to you to create the web applications. When
you install Asterisk, you have a communications server but its up to you to create the
communications applications.

Web applications are built out of HTML pages, CSS style sheets, server-side processing scripts,
images, databases, web services, etc. Asterisk communications applications are built out
Dialplan scripts, configuration files, audio recordings, databases, web services, etc. For a web
application to work, you need the web server connected to the Internet. For a communications
application to work, you need the communications server connected to communication services
(VolP or PSTN). For people to be able to access your web site you need to register a domain
name and set up DNS entries that point "www.yourdomain.com" to your server. For people to
access your communications system you need phone numbers or VoIP URIs that send calls to
your server.

In both cases the server is the plumbing that makes your application work. The server handles
the low-level complexities and allows you, the application developer, to concentrate on the
application logic and presentation. You don't have to be an expert on HTTP to create powerful
web applications, and you don't have to be an expert on SIP or Q.931 to create powerful
communications applications.

Here's a simple example. The following HTML script, installed on a working web server, prints
"Hello World" in large type:

<head>
<title>Hello World Deno</title>
</ head>
<body>
<hl>Hell o World! </ hl>
</ body>

The following Dialplan script answers the phone, waits for one second, plays back "hello world"
then hangs up.

100, 1, Answer ()

exten => 100, n, Wi t (1)

exten => 100, n, Pl ayback(hel | o- wor | d)
exten => 100, n, Hangup()

11>

In both cases the server components are handling all of the low level details of the underlying

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

protocols. Your application doesn't have to worry about the byte alignment, the packet size, the
codec or any of the thousands of other critical details that make the application work. This is the
power of an engine.

Who Uses Asterisk?

Asterisk is created by communication system developers, for communication system developers.
As an open source project, Asterisk is a collaboration between many different individuals and
companies, all of which need a flexible communications engine to power their applications.

A Brief History of the Asterisk Project

Way, way back in 1999 a young man named Mark Spencer was finishing his Computer
Engineering degree at Auburn University when he hit on an interesting business concept. 1999
was the high point in the .com revolution (aka bubble), and thousands of businesses world-wide
were discovering that they could save money by using the open source Linux operating system
in place of proprietary operating systems. The lure of a free operating system with open access
to the source code was too much to pass up. Unfortunately there was little in the way of
commercial support available for Linux at that time. Mark decided to fill this gap by creating a
company called "Linux Support Services". LSS offered a support hotline that IT professionals
could (for a fee) call to get help with Linux.

The idea took off. Within a few months, Mark had a small office staffed with Linux experts.
Within a few more months the growth of the business expanded demanded a "real” phone
system that could distribute calls evenly across the support team, so Mark called up several local
phone system vendors and asked for quotes. Much to his surprise, the responses all came back
well above $50,000 -- far more than Mark had budgeted for the project. Far more than LSS
could afford.

Rather than give in and take out a small business loan, Mark made a fateful decision. He
decided to write his own phone system. Why not? A phone system is really just a computer
running phone software, right? Fortunately for us, Mark had no idea how big a project he had
take on. If he had known what a massive undertaking it was to build a phone system from the
ground up might have gritted his teeth, borrowed the money and spent the next decade doing
Linux support. But he didn't know what he didn't know, and so he started to code. And he
coded. And he coded.

Mark had done his engineering co-op at Adtran, a communications and networking device
manufacturer in Huntsville, AL. There he had cut his teeth on telecommunications system
development, solving difficult problems generating a prodigious amount of complex code in short
time. This experience proved invaluable as he began to frame out the system which grew into
Asterisk. In only a few months Mark crafted the original Asterisk core code. As soon as he had
a working prototype he published the source code on the Internet, making it available under the
GPL license (the same license used for Linux).

Within a few months the idea of an "open source PBX" caught on. There had been a few other
open source communications projects, but none had captured the imagination of the global
population of communications geeks like Asterisk. As Mark labored on the core system,
hundreds (now thousands) of developers from all over the world began to submit new features
and functions.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Beginning Asterisk
Installing Asterisk

Now that you know a bit about Asterisk and how it is used, it's time to get you up and running
with your own Asterisk installation. There are various ways to get started with Asterisk on your
own system:

® |nstall an Asterisk-based Linux distribution such as AsteriskNOW. This takes care of installing Linux, Asterisk, and some web-based
interfaces all at the same time, and is the easiest way to get started if you're new to Linux and/or Asterisk.

® |f you're already familiar with Linux or Unix, you can simply install packages for Asterisk and its related tools using the package manager
in your operating system. We'll cover this in more detail below in Section 200.3. Alternate Install Methods.

® For the utmost in control of your installation, you can compile and install Asterisk (and its related tools) from source code. We'll explain
how to do this in Section 201. Installing Asterisk From Source.

Installing AsteriskNOW

Installing AsteriskNOW is easy! Simply visit http://www.asterisknow.org/ and download the latest
version. The file you'll download will have a .iso file extension. Then burn the .iso image to a CD,
and boot your system from the CD.

'33 Installing AsteriskNOW Will Overwrite Data

Please be aware that installing AsteriskNOW will overwrite any existing data on your hard drive.
Anything that is important should first be backed up to a different system.

When you boot from the AsteriskNOW CD, you'll see an introductory screen. Simply press enter
to continue the installation.

Screen shot of ISOLINUX screen
Install-Time Options

As the installer continues, you'll be prompted to enter several pieces of information.

® Hard disk layout. It is recommended to select "Remove all partitions on selected drives and create default layout." and move to the next
screen. This will erase all data on the system.

® Timezone settings. Select the location that is nearest to you and move to the next screen.

® Root password. The root user is the administrative user on Linux systems. Most system configuration requires root access. If this
password is lost, it is difficult to recover. It is recommended that your password contain a mix of lowercase and UPPERCASE letters,
numbers, and/or symbols.

After the final option, installation will begin. This will take approximately 15-30 minutes. Once
installation has completed, the system will reboot into your AsteriskNOW installation.

By default, AsteriskNOW will use DHCP to obtain an IP address on your network. You can use
the ifconfig command under Linux to view your current IP address, or system-config-network to
change your network settings.

Alternate Install Methods

If you already have a Linux system that you can dedicate to Asterisk, simply use the package

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.asterisknow.org/

manager in your operating system to install Asterisk, DAHDI, and libpri. Most modern Linux
distributions such as Debian, Ubuntu, and Fedora have these packages in their repositories.
Packages for Red Hat Enterprise Linux and CentOS are also available at
http://packages.asterisk.org/.

Validating Your AsteriskNOW Installation

Before continuing on, let's check a few things to make sure your system is in good working order.
First, let's make sure the DAHDI drivers are loaded. After logging in as the root user you can use
the Ismod under Linux to list all of the loaded kernel modules, and the grep command to filter
the input and only show the modules that have dahdi in their name.

[root @erver asterisk-1.6. X Y]# |Isnod | grep dahdi

If the command returns nothing, then DAHDI has not been started. Start DAHDI by running:

[root @erver asterisk-1.6.X Y]# service dadhi start

If you have DAHDI running, the output of Ismod | grep dahdi should look something like the
output below. (The exact details may be different, depending on which DAHDI modules have
been built, and so forth.)

[root @erver ~]# |snod | grep dahdi

dahdi _dumry 4288 0

dahdi _t ranscode 7928 1 wet c4xxp

dahdi _voi cebus 40464 2 wetdnmR4xxp, wet el2xp
dahdi 196544 12

dahdi _dunmmy, wet dm24xxp, wet ellxp, wet 1xxp, wet el2xp, wet 4xxp

crc_ccitt 2096 1 dahdi

Now that DAHDI is running, you can run dahdi_hardware to list any DAHDI-compatible devices
in your system. You can also run the dahdi_tool utility to show the various DAHDI-compatible
devices, and their current state.

To check if Asterisk is running, you can use the Asterisk initscript.

[root @erver ~]# service asterisk status
asterisk is stopped

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://packages.asterisk.org/

To start Asterisk, we'll use the initscript again, this time giving it the start action:

[root @erver ~]# service asterisk start
Starting asterisk:

When Asterisk starts, it runs as a background service (or daemon), so you typically won't see any
response on the command line. We can check the status of Asterisk and see that it's running by
using the command below. (The process identifier, or pid, will obviously be different on your
system.)

[root @erver ~]# service asterisk status
asterisk (pid 32117) is running...

And there you have it... you have an Asterisk system up and running! You should now continue
on in Section 202. Getting Started with Asterisk.

Installing Asterisk From Source

One popular option for installing Asterisk is to download the source code and compile it yourself.
While this isn't as easy as using package management or using an Asterisk-based Linux
distribution, it does let you decide how Asterisk gets built, and which Asterisk modules are built.

In this section, you'll learn how to download and compile the Asterisk source code, and get
Asterisk installed.

What to Download?

On a typical system, you'll want to download three components:

® Asterisk
* DAHDI
® libpri

The libpri library allows Asterisk to communicate with ISDN connections. (We'll cover more
about ISDN connections in Section 450.8, "Intro to ISDN PRI and BRI Connections".) While not
always necessary, we recommend you install it on new systems.

The DAHDI library allows Asterisk to communicate with analog and digital telephones and
telephone lines, including connections to the Public Switched Telephone Network, or PSTN. It
should also be installed on new systems, even if you don't immediately plan on using analog or
digital connections to your Asterisk system.

DAHDI

DAHDI stands for Digium Asterisk Hardware Device Interface, and is a set of drivers and utilities
for a number of analog and digital telephony cards, such as those manufactured by Digium. The
DAHDI drivers are independent of Asterisk, and can be used by other applications. DAHDI was
previously called Zaptel, as it evolved from the Zapata Telephony Project.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The DAHDI code can be downloaded as individual pieces (dahdi-linux for the DAHDI drivers,
and dahdi-tools for the DAHDI utilities. They can also be downloaded as a complete package
called dahdi-linux-complete, which contains both the Linux drivers and the utilities.

@ Why is DAHDI split into different pieces?

DAHDI has been split into two pieces (the Linux drivers and the tools) as third parties
have begun porting the DAHDI drivers to other operating systems, such as FreeBSD.
Eventually, we may have dahdi-linux, dahdi-freebsd, and so on.

The current version of libpri, DAHDI, and Asterisk can be downloaded from
http://downloads.digium.com/pub/telephony/.

System Requirements

In order to compile and install Asterisk, you'll need to install a C compiler and a number of
system libraries on your system.

® Compiler
® System Libraries

Compiler

The compiler is a program that takes source code (the code written in the C programming
language in the case of Asterisk) and turns it into a program that can be executed. While any C
compiler should be able to compile the Asterisk code, we strongly recommend that you use the
GCC compiler. Not only is it the most popular free C compiler on Linux and Unix systems, but it's
also the compiler that the Asterisk developers are using.

If the GCC compiler isn't already installed on your machine, simply use appropriate package
management system on your machine to install it. You'll also want to install the C++ portion of
GCC as well, as certain Asterisk modules will use it.

System Libraries

In addition to the C compiler, you'll also need a set of system libraries. These libraries are used
by Asterisk and must be installed before you can compile Asterisk. On most operating systems,
you'll need to install both the library and it's corresponding development package.

@ Development libraries

For most operating systems, the development packages will have -dev or -devel on
the end of the name. For example, on a Red Hat Linux system, you'd want to install
both the "openssl|" and "openssl-devel" packages.

A list of libraries you'll need to install include:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://downloads.digium.com/pub/telephony/

OpenSSL

ncurses

newt

libxml2

Kernel headers (for building DAHDI drivers)

We recommend you use the package management system of your operating system to install
these libraries before compiling and installing libpri, DAHDI, and Asterisk.

@ Help Finding the Right Libraries

If you're installing Asterisk 1.6.1.0 or later, it comes with a shell script called
install_prereq.sh in the contrib/scripts sub-directory. If you run install_prereq test, it
will give you the exact commands to install the necessary system libraries on your
operating system. If you run install_prereq install, it will attempt to download and
install the prerequisites automatically.

Untarring the Source

When you download the source for libpri, DAHDI, and Asterisk you'll typically end up with files
with a .tar.gz or .tgz file extension. These files are affectionately known as tarballs. The name
comes from the tar Unix utility, which stands for tape archive. A tarball is a collection of other files
combined into a single file for easy copying, and then often compressed with a utility such as
GZip.

To extract the source code from the tarballs, we'll use the tar command. The commands below
assume that you've downloaded the tarballs for libpri, DAHDI, and Asterisk to the /usr/local/src
directory on a Linux machine. (You'll probably need to be logged in as the root user to be able to
write to that directory.) We're also going to assume that you'll replace the letters X, Y, and Z with
the actual version numbers from the tarballs you downloaded. Also please note that the
command prompt may be slightly different on your system than what we show here. Don't worry,
the commands should work just the same.

First, we'll change to the directory where we downloaded the source code:

[root @erver ~]# cd /usr/local/src

Next, let's extract the source code from each tarball using the tar command. The -zxvf
parameters to the tar command tell it what we want to do with the file. The z option tells the
system to unzip the file before continuing, the x option tells it to extract the files from the tarball,
the v option tells it to be verbose (write out the name of every file as it's being extracted, and the f
option tells the tar command that we're extracting the file from a tarball file, and not from a tape.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[root @erver src]# tar -zxvf libpri-1.X Y.tar.gz
[root @erver src]# tar -zxvf dahdi-I|inux-conplete-2. X Y+2. X.Y.tar.gz

[root @erver src]# tar -zxvf asterisk-1.6.X Y.tar.gz

You should now notice that a new sub-directory was created for each of the tarballs, each
containing the extracted files from the corresponding tarball. We can now compile and install
each of the components.

Building and Installing LibPRI

First, let's compile and install libpri. Again, we'll assume that you'll replace the letters X, Y, and Z
with the actual version numbers from the tarballs you downloaded.

[root @erver src]# cd libpri-1.XY

This command changes directories to the libpri source directory.

[root @erver libpri-1.X Y]# make

This command compiles the libpri source code into a system library.

[root @erver libpri-1.X Y]# make install

This command installs the libpri library into the proper system library directory

Building and Installing DAHDI

Now that we have libpri installed, let's install DAHDI. On Linux, we will use the
DAHDI-linux-complete tarball, which contains both the DAHDI Linux drivers as well as the DAHDI
tools. Again, we're assuming that you've untarred the tarball in the /usr/local/src directory, and
that you'll replace X and Y with the appropriate version numbers.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[root @erver src]# cd dahdi-Iinux-conplete-2.X Y+2. X. Y
[root @erver dahdi-I|inux-conplete-2. X Y+2. X Y] # nmake
[root @erver dahdi-Iinux-conplete-2. X Y+2. X. Y]# nake install

[root @erver dahdi-Iinux-conplete-2. X Y+2. X Y]# make config

Checking Asterisk Requirements

Now it's time to compile and install Asterisk. Let's change to the directory which contains the
Asterisk source code.

[root @erver dahdi-Iinux-conplete-2. X Y+2. X Y]# cd
fusr/local/src/asterisk-1.6. XY

Next, we'll run a command called ./configure, which will perform a number of checks on the
operating system, and get the Asterisk code ready to compile on this particular server.

[root @erver asterisk-1.6.X Y]# ./configure

This will run for a couple of minutes, and warn you of any missing system libraries or other
dependencies. Upon completion, you should see a message that looks similar to the one shown
below. (Obviously, your host CPU type may be different than the below.)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

$ESESIESESESES=. .

. $7%7. . L T$$7: .
. $7%7. . LT$$7: .
. $$: . ,$7.7
. $7. 7$$$$. 8877
.. $$. $$$$$. 3887
A 2. $55$$ 2. 7$3$$.
$. 3. . $PP7. $BEHT7 . 7$$3. . $$3.
LTT7. . PEPEEST77SSST77SSS$S7. $$$,
$$$~ 73333 SSSS$$$7. . $$3.
. $87 . 733358887 ?7$3$$.
$$$ 2733333333331 . 3887
$$$ IVARRRRRRRRRRRRRR 1 $$3.
$$$ PSP 7$PSSSS$$$$$S . $$3.
$$$ $$ TI$S7 . $$% . $$3.
$$$% $$$$7 . $$3.
7$$%$7 7$$$$ 7$%$%
$$$$$ $$$
$$$$7. $$ (T™
$3$$$$$. L 7335888 $%
$EPPIPPPSSS7$$53555S. $$$35$
$ETTTTTSTSTSTSS.
configure: Package configured for:
configure: OS type : |inux-gnu
configure: Host CPU : x86_64
configure: build-cpu:vendor:os: x86 64 :
configure: host-cpu:vendor:os: x86_64 :

Cached Data

unknown :

unknown : |inux-gnu

i nux-gnu :

The ./configure command caches certain data to speed things up if it's invoked multiple times. To clear all the cached data, you
can use the following command to completely clear out any cached data from the Asterisk build system.

[root @erver asterisk-1.6.X Y]# nake distclean

Using Menuselect to Select Asterisk Options

The next step in the build process is to tell Asterisk which modules[docs:1] to compile and install,
as well as set various compiler options. These settings are all controlled via a menu-driven
system called menuselect. To access the menuselect system, type:

[root @erver asterisk-1.6.X Y]# make nenusel ect

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

1. Terminal Window
Your terminal window size must be at least eighty characters wide and twenty-one lines high, or menuselect will not work.
Instead, you'll get an error message stating

Term nal nust be at |east 80 x 21.

1. Asterisk 1.8+

Terninal nust be at |east 80 x 27.

The menuselect menu should look like the screen-shot below. On the left-hand side, you have a
list of categories, such as Applications, Channel Drivers, and PBX Modules. On the right-hand
side, you'll see a list of modules that correspond with the select category. At the bottom of the
screen you'll see two buttons. You can use the Tab key to cycle between the various sections,
and press the Enter key to select or unselect a particular module. If you see [docs:] next to a
module name, it signifies that the module has been selected. If you see *XXX nextto a
module name, it signifies that the select module cannot be built, as one of its dependencies is
missing. In that case, you can look at the bottom of the screen for the line labeled Depends
upon: for a description of the missing dependency.

When you're first learning your way around Asterisk on a test system, you'll probably want to
stick with the default settings in menuselect. If you're building a production system, however, you
may not wish to build all of the various modules, and instead only build the modules that your
system is using.

| Asterisk Module and Bulld Optien Selection

Applications app_adsiprog

Call Detalil Recording [*] app_alarmreceiver
Channel Drivers [*] app_amd

Codec Translators [*] app_authenticate
Format Interpreters [*] app_cdr

Dialplan Functions [*] app_chanisavail

PEX Modules [*] app_channelredirect
Resource Modules [*] app_chanspy

Test Modules [*] app_controlplayback

- EEEEsEIEsEsE e o

Asterisk ADSI Programming Application

Depends on: res_adsi(M)
Can use: N/A
Conflicts with: N/A

<ENTER> toggles selection | <Fl2> saves & exits | <E5C> exits without save

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

@ Easier Debugging of Asterisk Crashes

If you're finding that Asterisk is crashing on you, there's a setting in menuselect that
will help provide additional information to the Asterisk developers. Go into
menuselect, select the the Compiler Flags section (you'll need to scroll down in the
left-hand list), and select the DONT_OPTIMIZE setting. Then rebuild Asterisk as
shown below. While the Asterisk application will be slightly larger, it will provide
additional debugging symbols in the event of a crash.

We should also inform people that the sound prompts are selected in menuselect as well

When you are finished selecting the modules and options you'd like in menuselect, press F12 to
save and exit, or highlight the Save and Exit button and press enter.

Building and Installing Asterisk

Now we can compile and install Asterisk. To compile Asterisk, simply type make at the Linux
command line.

[root @erver asterisk-1.6.X Y]# make

The compiling step will take several minutes, and you'll see the various file names scroll by as
they are being compiled. Once Asterisk has finished compiling, you'll see a message that looks
like:

oo Asterisk Build Complete --------- +
+ Asterisk has successfully been built, and +
+ can be installed by running: +
+ +
+ make install +
o +
R Asterisk Build Complete --------- +

As the message above suggests, our next step is to install the compiled Asterisk program and
modules. To do this, use the make install command.

[root @erver asterisk-1.6.X Y]# make install

When finished, Asterisk will display the following warning:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

+---- Asterisk Installation Conplete ------- +

+ +
+ YOU MUST READ THE SECURI TY DOCUMENT +
+ +
+ Asterisk has successfully been installed. +
+ If you would like to install the sanple +
+ configuration files (overwiting any +
+ existing config files), run: +
+ +
+ make sanpl es +
+ +
o m e e e e e e e e e e e e memeaoa-- +
+---- Asterisk Installation Complete ------- +

@ Security Precautions
As the message above suggests, we very strongly recommend that you read the security documentation before continuing with
your Asterisk installation. Failure to read and follow the security documentation can leave your system vulnerable to a number of
security issues, including toll fraud.

If you installed Asterisk from a tarball (as shown above), the security information is
located in a PDF file named asterisk.pdfin the tex/ sub-directory of the source code. If
that file doesn't exist, please install the rubber application on your system, and then

type:

[root @erver asterisk-1.6.X Y]# make pdf

Installing Sample Files

To install a set of sample configuration files for Asterisk, type:

[root @erver asterisk-1.6.X Y]# make sanpl es

Any existing sample files which have been modified will be given a .old file extension. For
example, if you had an existing file named extensions.conf, it would be renamed to
extensions.conf.old and the sample dialplan would be installed as extensions.conf.

Installing Initialization Scripts

Now that you have Asterisk compiled and installed, the last step is to install the initialization
script, or initscript. This script starts Asterisk when your server starts, and can be used to stop or
restart Asterisk as well. To install the initscript, use the make config command.

[root @erver asterisk-1.6.X Y]# make config

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

As your Asterisk system runs, it will generate logfiles. It is recommended to install the logrotation
script in order to compress and rotate those files, to save disk space and to make searching
them or cataloguing them easier. To do this, use the make install-logrotate command.

[root @erver asterisk-1.6.X Y]# make install-logrotate

Validating Your Installation

Before continuing on, let's check a few things to make sure your system is in good working order.
First, let's make sure the DAHDI drivers are loaded. You can use the Ismod under Linux to list all
of the loaded kernel modules, and the grep command to filter the input and only show the
modules that have dahdi in their name.

[root @erver asterisk-1.6. X Y]# |snod | grep dahdi

If the command returns nothing, then DAHDI has not been started. Start DAHDI by running:

[root @erver asterisk-1.6.X Y]# /etc/init.d/ dadhi start

@ Different Methods for Starting Initscripts

Many Linux distributions have different methods for starting initscripts. On most Red
Hat based distributions (such as Red Hat Enterprise Linux, Fedora, and CentOS) you
can run:

[root @erver asterisk-1.6.X Y]# service dahdi start

Distributions based on Debian (such as Ubuntu) have a similar command, though it's
not commonly used:

[root @erver asterisk-1.6.X Y]# invoke-rc.d dahdi start

If you have DAHDI running, the output of Ismod | grep dahdi should look something like the
output below. (The exact details may be different, depending on which DAHDI modules have
been built, and so forth.)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[root @erver asterisk-1.6.X Y]# |Isnod | grep dahdi
dahdi _dunmy 4288 0

dahdi _transcode 7928 1 wctc4xxp

dahdi _voi cebus 40464 2 wct dnR4xxp, wet el2xp

dahdi 196544 12
dahdi _dunmmy, wet dnmR4xxp, wet ellxp, wet 1xxp, wet el2xp, wet 4xxp
crc_ccitt 2096 1 dahdi

Now that DAHDI is running, you can run dahdi_hardware to list any DAHDI-compatible devices
in your system. You can also run the dahdi_tool utility to show the various DAHDI-compatible
devices, and their current state.

To check if Asterisk is running, you can use the Asterisk initscript.

[root @erver asterisk-1.6. X Y]# /etc/init.d/ asterisk status
asterisk is stopped

To start Asterisk, we'll use the initscript again, this time giving it the start action:

[root @erver asterisk-1.6. X Y]# /etc/init.d/ asterisk start
Starting asterisk:

When Asterisk starts, it runs as a background service (or daemon), so you typically won't see any
response on the command line. We can check the status of Asterisk and see that it's running
using the command below. (The process identifier, or pid, will obviously be different on your
system.)

[root @erver asterisk-1.6.X Y]# /etc/init.d/ asterisk status
asterisk (pid 32117) is running...

And there you have it! You've compiled and installed Asterisk, DAHDI, and libpri from source
code.

Getting Started with Asterisk

In this section, we'll show you how to get started with Asterisk, and how to get around on the
Asterisk command-line interface (commonly abbreviated as CLI). We'll also show you how to
troubleshoot common problems that you might encounter when first learning Asterisk

Connecting to the CLI

First, let's show you how to connect to the Asterisk command-line interface. As you should recall

from the installation, Asterisk typically runs in the background as a service or daemon. If the
Asterisk service is already running, type the command below to connect to its command-line

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

interface.

[root @erver ~]# asterisk -r

The -r parameter tells the system that you want to re-connect to the Asterisk service. If the
reconnection is successful, you'll see something like this:

[root @erver ~]# asterisk -r

Asterisk version, Copyright (C) 1999 - 2010 Digium Inc. and others.
Created by Mark Spencer <markster @li gi um conp

Asterisk comes with ABSOLUTELY NO WARRANTY; type 'core show
warranty' for details.

This is free software, with conponents |icensed under the G\U
General Public

Li cense version 2 and other |icenses; you are welcone to
redistribute it under

certain conditions. Type 'core show |license' for details.

to Asterisk version currently running on server (pid = 11187)
server*CLI >

Notice the *CLI> text? That's your Asterisk command-line prompt. All of the Asterisk CLI
commands take the form of module action parameters.... For example, type core show
uptime to see how long Asterisk has been running.

server*CLlI > core show uptine
Systemuptinme: 1 hour, 34 mnutes, 17 seconds
Last reload: 1 hour, 34 mnutes, 17 seconds

You can use the built-in help to get more information about the various commands. Simply type
core show help at the Asterisk prompt for a full list of commands, or core show help command
for help on a particular command.

If you'd like to exit the Asterisk console and return to your shell, just use the quit command from
the CLI. Such as:

server*CLI > quit

Stopping and Restarting Asterisk

There are four common commands related to stopping the Asterisk service. They are:

1. core stop now - This command stops the Asterisk service immediately, ending any calls in progress.
2. core stop gracefully - This command prevents new calls from starting up in Asterisk, but allows calls in progress to continue. When all
the calls have finished, Asterisk stops.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

3. core stop when convenient - This command waits until Asterisk has no calls in progress, and then it stops the service. It does not
prevent new calls from entering the system.

There are three related commands for restarting Asterisk as well.

1. core restart now - This command restarts the Asterisk service immediately, ending any calls in progress.

2. core restart gracefully - This command prevents new calls from starting up in Asterisk, but allows calls in progress to continue. When all
the calls have finished, Asterisk restarts.

3. core restart when convenient - This command waits until Asterisk has no calls in progress, and then it restarts the service. It does not
prevent new calls from entering the system.

There is also a command if you change your mind.

® core abort shutdown - This command aborts a shutdown or restart which was previously initiated with the gracefully or when convenient
options.

Changing the Verbose and Debug Levels

Asterisk has two different classes of messages that appear in the command-line interface. The
first class is called verbose messages. Verbose messages give information about the calls on
the system, as well as notices, warnings, and errors. Verbose messages are intended for
Asterisk administrators to be able to better manage their systems.

Asterisk allows you to control the verbosity level of the command-line interface. At a verbosity
level of zero, you'll receive minimal information about calls on your system. As you increase the
verbosity level, you'll see more and more information about the calls. For example, if you set the
verbosity level to three or higher, you'll see each step a call takes as it makes its way through the
dialplan. There are very few messages that only appear at verbosity levels higher than three.

To change the verbosity level, use the CLI command core set verbose, as shown below:

server*CL|I > core set verbose 3
Verbosity was 0 and is now 3

You can also increase (but not decrease) the verbosity level when you connect to the Asterisk
CLI from the Linux prompt, by using one or more -v parameters to the asterisk application. For
example, this would connect to the Asterisk CLI and set the verbosity to three (if it wasn't already
three or higher), because we added three -v parameters:

[root @erver ~]# asterisk -vvvr

The second class of system messages is known as debug messages. These messages are
intended for Asterisk developers, to give information about what's happening in the Asterisk
program itself. They're often used by developers when trying to track down problems in the code,
or to understand why Asterisk is behaving in a certain manner.

To change the debugging level, use the CLI command core set debug, as shown below:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

server*CLlI > core set debug 4
Core debug was 0 and is now 4

You can also increase (but not decrease) the debugging level when you connect to the Asterisk
CLI from the Linux prompt. Simply add one or more -d parameters to the asterisk application.

[root @erver ~]# asterisk \-ddddr

.ﬂ. Verbose and Debug Levels

Please note that the verbose and debug levels are global settings, and apply to all of
Asterisk, not just your command-line interface.

We recommend that you set your verbosity level to three while learning Asterisk, so
that you can get a feel for what is happening as calls are processed. On a busy
production system, however, you'll want to set the verbosity level lower. We also
recommend that you use debug messages sparingly, as they tend to be quite
verbose and can affect call volume on busy systems.

Simple CLI Tricks

There are a couple of tricks that will help you on the Asterisk command-line interface. The most
popular is tab completion. If you type the beginning of a command and press the Tab key,
Asterisk will attempt to complete the name of the command for you, or show you the possible
commands that start with the letters you have typed. For example, type co and then press the
Tab key on your keyboard.

server *CLI > co[Tab]
config core
server*CLI > co

Now press the r key, and press tab again. This time Asterisk completes the word for you, as core
is the only command that begins with cor. This trick also works with sub-commands. For
example, type core show and press tab. (You may have to press tab twice, if you didn't put a
space after the word show.) Asterisk will show you all the sub-commands that start with core
show.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

server*CLlI > core show [Tab]

application applications calls channel
channel s channel t ype channel t ypes codec
codecs config file function
functions hel p hi nt hints

i mge i cense profile settings
Swi t ches sysinfo t askprocessors threads
transl ation uptinme version warr anty

server*CLI > core show

Another trick you can use on the CLI is to cycle through your previous commands. Asterisk
stores a history of the commands you type and you can press the up arrow key to cycle through
the history.

If you type an exclamation mark at the Asterisk CLI, you will get a Linux shell. When you exit the
Linux shell (by typing exit or pressing Ctrl+D), you return to the Asterisk CLI. You can also type
an exclamation mark and a Linux command, and the output of that command will be shown to
you, and then you'll be returned to the Asterisk CLI.

server*CLI > ! whoam
r oot
server*CLI >

As you can see, there's a wealth of information available from the Asterisk command-line
interface, and we've only scratched the surface. In later sections, we'll go into more details about
how to use the command-line interface for other purposes.

Troubleshooting

If you're able to get the command-line examples above working, feel free to skip this section.
Otherwise, let's look at troubleshooting connections to the Asterisk CLI.

The most common problem that people encounter when learning the Asterisk command-line
interface is that sometimes they're not able to connect to the Asterisk service running in the
background. For example, let's say that Fred starts the Asterisk service, but then isn't able to
connect to it with the CLI:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[root @erver ~]# service asterisk start

Starting asterisk: [OK]
[root @erver ~]# asterisk -r

Asterisk version, Copyright (C) 1999 - 2010 Digium Inc. and others.
Created by Mark Spencer <markster @li gi um conp

to connect to renote asterisk (does /var/run/asterisk/asterisk.ctl
exi st ?)

What does this mean? It most likely means that Asterisk did not remain running between the time
that the service was started and the time Fred tried to connect to the CLI (even if it was only a
matter of a few seconds.) This could be caused by a variety of things, but the most common is a
broken configuration file.

To diagnose Asterisk start-up problems, we'll start Asterisk in a special mode, known as console
mode. In this mode, Asterisk does not run as a background service or daemon, but instead runs
directly in the console. To start Asterisk in console mode, pass the -c parameter to the asterisk
application. In this case, we also want to turn up the verbosity, so we can see any error
messages that might indicate why Asterisk is unable to start.

[root @erver ~]# asterisk -vvvc

Asteri sk version, Copyright (C 1999 - 2010 Digium Inc. and others.
Created by Mark Spencer <markster @i gi um conp

Asterisk cones with ABSOLUTELY NO WARRANTY; type 'core show
warranty' for details.

This is free software, with conponents |icensed under the GNU
General Public

Li cense version 2 and other licenses; you are welcone to
redistribute it under

certain conditions. Type 'core show |icense' for details.

== Parsing '/etc/asterisk/asterisk.conf": == Found
== Parsing '/etc/asterisk/extconfig.conf': == Found
== Parsing '/etc/asterisk/logger.conf': == Found
== Parsing '/etc/asterisk/asterisk.conf": == Found
Asteri sk Dynam c Loader Starting:
== Parsing '/etc/asterisk/nodul es.conf’: == Found

Carefully look for any errors or warnings that are printed to the CLI, and you should have enough
information to solve whatever problem is keeping Asterisk from starting up.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

@ Running Asterisk in Console Mode

We don't recommend you use Asterisk in console mode on a production system, but
simply use it for debugging, especially when debugging start-up problems. On
production systems, run Asterisk as a background service.

Asterisk Architecture

From an architectural standpoint, Asterisk is made up of many different modules. This modularity
gives you an almost unlimited amount of flexibility in the design of an Asterisk-based system. As
an Asterisk administrator, you have the choice on which modules to load. Each module that you
loads provides different capabilities to the system. For example, one module might allow your
Asterisk system to communicate with analog phone lines, while another might add call reporting
capabilities. In this section, we'll discuss the various types of modules and the capabilities they
provide.

Asterisk Architecture, The Big Picture

Before we dive too far into the various types of modules, let's first take a step back and look at
the overall architecture of Asterisk.

caEarac

Command P Bx Manager
Line Interface Interface

Applications esources
> -
DA

Audio &
Video
Codecs

File System
Format Config.
Drivers Drivers

CDR

Drivers

Asterisk Architecture

We need to add CEL and Bridge modules to this picture, and take CLI and Manager out for now
The heart of any Asterisk system is the core. The PBX core is the essential component that
takes care of bridging calls. The core also takes care of other items like reading the configuration

files and loading the other modules. We'll talk more about the core below, but for now just
remember that all the other modules connect to it.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

From a logistical standpoint, these modules are typically files with a .so file extension, which live
in the Asterisk modules directory (which is typically /usr/lib/asterisk/modules). When Asterisk
starts up, it loads these files and adds their functionality to the system.

@ A Plethora of Modules

Take just a minute and go look at the Asterisk modules directory on your system.
You should find a wide variety of modules. A typical Asterisk system has over one
hundred fifty different modules!

The core also contains the dialplan, which is the logic of any Asterisk system. The dialplan
contains a list of instructions that Asterisk should follow to know how to handle incoming and
outgoing calls on the system.

Asterisk modules which are part of the core have a file name that look like pbx_XxxxxXx.so.

Types of Asterisk Modules

There are many different types of modules, many of which are shown in the diagram above.

® Channel Drivers

At the top of the diagram, we show channel drivers. Channel drivers communicate with devices
outside of Asterisk, and translate that particular signaling or protocol to the core.

® Dialplan Applications

Applications provide call functionality to the system. An application might answer a call, play a
sound prompt, hang up a call, and so forth.

® Dialplan Functions

Functions are used to retrieve or set various settings on a call. A function might be used to set
the Caller ID on an outbound call, for example.

® Resources

As the name suggests, resources provide resources to Asterisk. Common examples of resources
include music on hold and call parking.

®* CODECs

A CODEC (which is an acronym for COder/DECoder) is a module for encoding or decoding
audio or video. Typically codecs are used to encode media so that it takes less bandwidth.

®* File Format Drivers

File format drivers are used to save media to disk in a particular file format, and to convert those
files back to media streams on the network.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Call Detail Record (CDR) Drivers
CDR drivers write call logs to a disk or to a database.
® Call Event Log (CEL) Drivers

Call event logs are similar to call detail records, but record more detail about what happened
inside of Asterisk during a particular call.

® Bridge Drivers

Bridge drivers are used by the bridging architecture in Asterisk, and provide various methods of
bridging call media between participants in a call.

Now let's go into more detail on each of the module types.

Channel Driver Modules

All calls from the outside come through a channel driver before reaching the core, and all
outbound calls go through a channel driver on their way to the external device.

The SIP channel driver, for example, communicates with external devices using the SIP protocol.
It translates the SIP signaling into the core. This means that the core of Asterisk is signaling
agnostic. Therefore, Asterisk isn't just a SIP PBX, it's a multi-protocol PBX.

For more information on the various channel drivers, see [Section 400. Channel Drivers and
External Connectivity].

All channel drivers have a file name that look like chan_xxxxx.so, such as chan_sip.so or
chan_dahdi.so.

Dialplan Application Modules

The application modules provide call functionality to the system. These applications are then
scripted sequentially in the dialplan. For example, a call might come into Asterisk dialplan, which
might use one application to answer the call, another to play back a sound prompt from disk, and
a third application to allow the caller to leave voice mail in a particular mailbox.

For more information on dialplan applications, see Dialplan Fundamentals.

All application modules have file names that looks like app_xxxxx.so, such as
app_voicemail.so.

Dialplan Function Modules

Dialplan functions are somewhat similar to dialplan applications, but instead of doing work on a
particular channel or call, they simply retrieve or set a particular setting on a channel, or perform
text manipulation. For example, a dialplan function might retrieve the Caller ID information from
an incoming call, filter some text, or set a timeout for caller input.

For more information on dialplan functions, see [PBX Features].

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

All dialplan application modules have file names that looks like func_xxxxx.so, such as
func_callerid.so.

Resource Modules

Resources provide functionality to Asterisk that may be called upon at any time during a call,
even while another application is running on the channel. Resources are typically used of
asynchronous events such as playing hold music when a call gets placed on hold, or performing
call parking.

Resource modules have file names that looks like res_xxxxx.so, such as res_musiconhold.so.

Codec Modules

CODEC modules have file names that look like codec_xxxxx.so0, such as codec_alaw.so and
codec_ulaw.so.

CODECs represent mathematical algorithms for encoding (compressing) and decoding
(decompression) media streams. Asterisk uses CODEC modules to both send and recieve media
(audio and video). Asterisk also uses CODEC modules to convert (or transcode) media streams
between different formats.

CODEC modules have file names that look like codec_xxxxx.so, such as codec_alaw.so and
codec_ulaw.so.

Asterisk is provided with CODEC modules for the following media types:

®* ADPCM, 32kbit/s

® G.711 alaw, 64kbit/s
® G.711 ulaw, 64kbit/s
® (G.722, 64kbit/s

® (5.726, 32kbit/s

® GSM, 13kbit/s

® LPC-10, 2.4kbit/s

If the Speex (www.speex.org) development libraries are detected on your system when Asterisk
is built, a CODEC module for Speex will also be installed.

If the iLBC (www.ilbcfreeware.org) development libraries are detected on your system when
Asterisk is built, a CODEC module for iLBC will also be installed.

Support for the patent-encumbered G.729A or G.723.1 CODECSs is provided by Digium on a
commercial basis through both software and hardware products. For more information about
purchasing licenses or hardware to use the G.729A or G.723.1 CODECs with Asterisk, please
see Digium's website.

Support for Polycom's patent-encumbered but free G.722.1 Siren7 and G.722.1C Sirenl14
CODECs can be enabled in Asterisk by downloading the binary CODEC modules from Digium's
website.

For more detailed information on CODECSs, see [CODECs].

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.speex.org
http://www.ilbcfreeware.org/

File Format Drivers

Add a list of the file formats that Asterisk supports, then point them at the module in section 400
that goes into more detail?

Asterisk uses file format modules to take media (such as audio and video) from the network and
save them on disk, or retrieve said files from disk and convert them back to a media stream.
While often related to CODECS, there may be more than one available on-disk format for a
particular CODEC.

File format modules have file names that look like format_xxxxx.so, such as format_wav.so
and format_jpeg.so.

Add a list of the file formats that Asterisk supports, then point them at the module in section 400
that goes into more detail?

Call Detail Record (CDR) Drivers

CDR modules are used to store call detail records in a variety of formats. Popular storage
mechanisms include comma-separated value (CSV) files, as well as relational databases such
as PostgreSQL. Call detail records typically contain one record per call, and give details such as
who made the call, who answered the call, the amount of time spent on the call, and so forth.

For more information on call detail records, see [Section 370. Call Detail Records].

Call detail record modules have file names that look like cdr_xxxxx.so, such as cdr_csv.so and
cdr_pgsql.so.

Call Event Log (CEL) Driver Modules

Call Event Logs record the various actions that happen on a call. As such, they are typically more
detailed that call detail records. For example, a call event log might show that Alice called Bob,
that Bob's phone rang for twenty seconds, then Bob's mobile phone rang for fifteen seconds, the
call then went to Bob's voice mail, where Alice left a twenty-five second voicemail and hung up
the call. The system also allows for custom events to be logged as well.

For more information about Call Event Logging, see [Call Event Logging].

Call event logging modules have file names that look like cel_xxxxx.so, such as cel_custom.so
and cel_adaptive_odbc.so.

Bridging Modules

Beginning in Asterisk 1.6.2, Asterisk introduced a new method for bridging calls together. It relies
on various bridging modules to control how the media streams should be mixed for the
participants on a call. The new bridging methods are designed to be more flexible and more
efficient than earlier methods.

Bridging modules have file names that look like bridge_xxxxx.so, such as bridge_simple.so
and bridge_multiplexed.so.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Call Flow and Bridging Model

Now that you know about the various modules that Asterisk uses, let's talk about the ways that
calls flow through an Asterisk system. To explain this clearly, let's say that Alice wants to talk to
Bob, and they both have SIP phones connected to their Asterisk system. Let's see what
happens!

Should we add a graphic to help explain the call flow model?

. Alice dials extension 6002, which is Bob's extension on the Asterisk system.

A SIP message goes from Alice's phone to the SIP channel driver in Asterisk

The SIP channel driver authenticates the call. If Alice's phone does not provide the proper credentials, Asterisk rejects the call.

. At this point, we have Alice's phone communicating with Asterisk.

. Now the call goes from the SIP channel driver into the core of Asterisk. Asterisk looks for a set of instructions to follow for extension 6002
in the dialplan.

. Extension 6002 in the dialplan tells Asterisk to call Bob's phone

. Asterisk makes a call out through the SIP channel driver to Bob's phone.

. Bob answers his phone.

. Now we have two independent calls on the Asterisk system: one from Alice, and to Bob. Asterisk now bridges the audio between these
two calls (known as channels in Asterisk parlance).

10. When one channel hangs up, Asterisk signals the other channel to hang up.

A WN P

© 0 ~NO®

And there we have it! We've shown how calls flow from external devices, through the channel
drivers to the core of Asterisk, and back out through the channel drivers to external devices.

Asterisk Configuration Files

Intro to Asterisk Configuration Files

In this section, we'll introduce you to the Asterisk configuration files, and show you how to use
some advanced features.

Config File Format

Asterisk is a very flexible telephony engine. With this flexibility, however, comes a bit of
complexity. Asterisk has quite a few configuration files which control almost every aspect of how
it operates. The format of these configuration files, however, is quite simple. The Asterisk
configuration files are plain text files, and can be edited with any text editor.

Sections and Settings

The configuration files are broken into various section, with the section name surrounded by
square brackets. Section names should not contain spaces, and are case sensitive. Inside of
each section, you can assign values to various settings. In general, settings in one section are
independent of values in another section[docs:5]. Some settings take values such as true or
false, while other settings have more specific settings. The syntax for assigning a value to a
setting is to write the setting name, an equals sign, and the value, like this:

Objects
Some Asterisk configuration files also create objects. The syntax for objects is slightly different

than for settings. To create an object, you specify the type of object, an arrow formed by the
equals sign and a greater-than sign (=>), and the settings for that object.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

settings]]>

.a Confused by Object Syntax?
In order to make life easier for newcomers to the Asterisk configuration files, the developers have made it so that you can also
create objects with an equal sign. Thus, the two lines below are functionally equivalent.

sone_obj ect =>set ti ngs
sone_obj ect =settings

It is common to see both versions of the syntax, especially in online Asterisk
documentation and examples. This book, however, will denote objects by using the
arrow instead of the equals sign.

nanel

| abel 1=val ue0
| abel 3=val ue3
obj ect 2=>nane2]] >

In this example, objectl inherits both labell and label2. It is important to note that object2 also
inherits label2, along with labell (with the new overridden value value0) and label3.

In short, objects inherit all the settings defined above them in the current section, and later
settings override earlier settings.

Comments

We can (and often do) add comments to the Asterisk configuration files. Comments help make
the configuration files easier to read, and can also be used to temporarily disable certain settings.

Comments on a Single Line

Single-line comments begin with the semicolon (;) character. The Asterisk configuration parser
treats everything following the semicolon as a comment. To expand on our previous example:

Block Comments

Asterisk also allows us to create block comments. A block comment is a comment that begins on
one line, and continues for several lines. Block comments begin with the character sequence ;-5

and—eeaﬂme—aemss—nwﬁﬂe—kﬂes-uﬂﬂkﬂqe-eha%aese#sequeﬁee— is encountered. The block

comment ends immediately after the --;.

Using The include and exec Constructs

There are two other constructs we can use within our configuration files. They are #include and
#exec.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The #include construct tells Asterisk to read in the contents of another configuration file, and act
as though the contents were at this location in this configuration file. The syntax is #include
filename, where filename is the name of the file you'd like to include. This construct is most
often used to break a large configuration file into smaller pieces, so that it's more manageable.

The #exec takes this one step further. It allows you to execute an external program, and place
the output of that program into the current configuration file. The syntax is #exec program,
where program is the name of the program you'd like to execute.

' Enabling #exec Functionality
The #exec construct is not enabled by default, as it has some risks both in terms of performance and security. To enable this
functionality, go to the asterisk.conf configuration file (by default located in /etc/asterisk) and set execincludes=yes in the
[options] section. By default both the [options] section heading and the execincludes=yes option have been commented out,
you you'll need to remove the semicolon from the beginning of both lines.

Let's look at example of both constructs in action.

Adding to an existing section

If you want to add settings to an existing section of a configuration file (either later in the file, or
when using the #include and #exec constructs), add a plus sign in parentheses after the section
heading, as shown below:

This example shows that the setting2 setting was added to the existing [docs:section-name]
section of the configuration file.

Templates

Another construct we can use within most Asterisk configuration files is the use of templates. A
template is a section of a configuration file that is only used as a base (or template, as the name
suggests) to create other sections from.

Template Syntax

To define a section as a template, place an exclamation mark in parentheses after the section
heading, as shown in the example below.

Using Templates
To use a template when creating another section, simply put the template name in parentheses

after the section heading name, as shown in the example below. If you want to inherit from
multiple templates, use commas to separate the template names).

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The newly-created section will inherit all the values and objects defined in the template(s), as
well as any new settings or objects defined in the newly-created section. The settings and
objects defined in the newly-created section override settings or objects of the same name from
the templates. Consider this example:

The [docs:test-three] section will be processed as though it had been written in the following
way:

Basic PBX Functionality

In this section, we're going to guide you through the basic setup of a very primitive PBX. After
you finish, you'll have a basic PBX with two phones that can dial each other. In later modules,
we'll go into more detail on each of these steps, but in the meantime, this will give you a basic
system on which you can learn and experiement.

The Most Basic PBX

While it won't be anything to brag about, this basic PBX that you will build from Asterisk will help
you learn the fundamentals of configuring Asterisk. For this exercise, we're going to assume that
you have access to two phones which speak the SIP voice-over-IP protocol. There are a wide
variety of SIP phones available in many different shapes and sizes, and if your budget doesn't
allow for you to buy phones, feed free to use a free soft phone. Soft phones are simply computer
programs which run on your computer and emulate a real phone, and communicate with other
devices across your network, just like a real voice-over-IP phone would.

Creating SIP Accounts

In order for our two phones to communicate with each other, we need to configure an account for
each phone in the channel driver which corresponds to the protocol they'll be using. Since both
the phones are using the SIP protocol, we'll configure accounts in the SIP channel driver
configuration file, called sip.conf. (This file resides in the Asterisk configuration directory, which
is typically /etc/asterisk.) Let's name your phones Alice and Bob, so that we can easily
differentiate between them.

Open sip.conf with your favorite text editor, and spend a minute or two looking at the file. (Don't
let it overwhelm you — the sample sip.conf has a lot of data in it, and can be overwhelming at
first glance.) Notice that there are a couple of sections at the top of the configuration, such as
[docs:general] and [docs:authentication], which control the overall functionality of the channel
driver. Below those sections, there are sections which correspond to SIP accounts on the
system. Scroll to the bottom of the file, and add a section for Alice and Bob. You'll need to
choose your own unigue password for each account, and change the permit line to match the
settings for your local network.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

.a Be Serious About Account Security
We can't stress enough how important it is for you to pick a strong password for all accounts on Asterisk, and to only allow
access from trusted networks. Unfortunately, we've found many instances of people exposing their Asterisk to the internet at
large with easily-guessable passwords, or no passwords at all. You could be at risk of toll fraud, scams, and other malicious

behavior.

For more information on Asterisk security and how you can protect yourself, check
out http://www.asterisk.org/security/webinar/.

After adding the two sections above to your sip.conf file, go to the Asterisk command-line
interface and run the sip reload command to tell Asterisk to re-read the sip.conf configuration

file.

server*CLlI > sip rel oad
Rel oading SIP

server*CLI >

@ Reloading Configuration Files

Don't forget to reload the appropriate Asterisk configuration files after you have made
changes to them.

Registering Phones to Asterisk

The next step is to configure the phones themselves to communicate with Asterisk. The way we
have configured the accounts in the SIP channel driver, Asterisk will expect the phones to
register to it. Registration is simply a mechanism where a phone communicates "Hey, I'm Bob's
phone... here's my username and password. Oh, and if you get any calls for me, I'm at this
particular IP address."

Configuring your particular phone is obviously beyond the scope of this guide, but here are a list
of common settings you're going to want to set in your phone, so that it can communicate with
Asterisk:

® Registrar/Registration Server - The location of the server which the phone should register to. This should be set to the IP address of

your Asterisk system.

® *SIP User Name/Account Name/Address - *The SIP username on the remote system. This should be set to demo-alice on one phone
and demo-bob on the other. This username corresponds directly to the section name in square brackets in sip.conf.

® SIP Authentication User/Auth User - On Asterisk-based systems, this will be the same as the SIP user name above.

® Proxy Server/Outbound Proxy Server - This is the server with which your phone communicates to make outside calls. This should be
set to the IP address of your Asterisk system.

You can tell whether or not your phone has registered successfully to Asterisk by checking the
output of the sip show peers command at the Asterisk CLI. If the Host column says

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.asterisk.org/security/webinar/

(Unspecified), the phone has not yet registered. On the other hand, if the Host column contains
an IP address and the Dyn column contains the letter D, you know that the phone has
successfully registered.

server*CLlI > sip show peers

Nane/ user nane Host Dyn NAT ACL Port
St at us

deno-alice (Unspeci fi ed) D A 5060
Unnoni t or ed

deno- bob 192. 168. 5. 105 D A 5060

Unnoni t or ed
2 sip peers [Monitored: O online, O offline Unnmonitored: 2 online, O

of fli ne]

In the example above, you can see that Alice's phone has not registered, but Bob's phone has
registered.

@ Debugging SIP Registrations

If you're having troubles getting a phone to register to Asterisk, make sure you watch
the Asterisk CLI with the verbosity level set to at least three while you reboot the
phone. You'll likely see error messages indicating what the problem is, like in this
example:

NOTI CE[22214] : chan_si p. c: 20824 handl e_request _regi ster: Registration from
""Alice"
<si p: deno-al i ce@92. 168.5.50>" failed for '192.168.5.103' - Wong password

As you can see, Asterisk has detected that the password entered into the phone
doesn't match the secret setting in the [demo-alice] section of sip.conf.

Creating Dialplan Extensions

The last things we need to do to enable Alice and Bob to call each other is to configure a couple
of extensions in the dialplan.

) Whatis an Extension?
When dealing with Asterisk, the term extension does not represent a physical device such as a phone. An extension is simply a
set of actions in the dialplan which may or may not write a physical device. In addition to writing a phone, an extensions might
be used for such things auto-attendant menus and conference bridges. In this guide we will be careful to use the words phone
or device when referring to the physical phone, and extension when referencing the set of instructions in the Asterisk dialplan.

Let's take a quick look at the dialplan, and then add two extensions.

Open extensions.conf, and take a quick look at the file. Near the top of the file, you'll see some
general-purpose sections named [docs:general] and [docs:globals]. Any sections in the

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

dialplan beneath those two sections is known as a context. The sample extensions.conf file
has a number of other contexts, with names like [docs:demo] and [docs:default].

We'll cover contexts more in [Section 215. Dialplan Fundamentals], but for now you should know
that each phone or outside connection in Asterisk points at a single context. If the dialed
extension does not exist in the specified context, Asterisk will reject the call.

Go to the bottom of your extensions.conf file, and add a new context named [docs:users].
Naming Your Dialplan Contexts

There's nothing special about the name users for this context. It could have been named
strawberry_milkshake, and it would have behaved exactly the same way. It is considered best
practice, however, to name your contexts for the types of extensions that are contained in that
context. Since this context contains extensions for the users of our PBX system, we'll call our
context users.

Underneath that context name, we'll create an extesion numbered 6001 which attempts to ring
Alice's phone for twenty seconds, and an extension 6002 which attempts to rings Bob's phone for
twenty seconds.

6001, 1, Di al (Sl P/ denp-al i ce, 20)
ext en=>6002, 1, Di al (SI P/ denp- bob, 20)]] >

After adding that section to extensions.conf, go to the Asterisk command-line interface and tell
Asterisk to reload the dialplan by typing the command dialplan reload. You can verify that
Asterisk successfully read the configuration file by typing dialplan show users at the CLI.

server*CLI > di al pl an show users
[Context 'users' created by 'pbx config' |]

'6001" => 1. Dial (SIP/denp-alice, 20)
[pbx_confi g]
'6002' => 1. Dial (SIP/ denp-bob, 20)

[pbx_confi g]

-= 2 extensions (2 priorities) in 1 context. =-

Now we're ready to make a test call!

Making a Phone Call

At this point, you should be able to pick up Alice's phone and dial extension 6002 to call Bob, and
dial 6001 from Bob's phone to call Alice. As you make a few test calls, be sure to watch the
Asterisk command-line interface (and ensure that your verbosity is set to a value three or higher)
so that you can see the messages coming from Asterisk, which should be similar to the ones
below:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

server*CLI > -- Executing [6002@isers: 1]
Di al ("SI P/ denp- al i ce-00000000", "SI P/ deno-bob, 20") in new stack
-- Call ed deno-bob
-- Sl P/ deno- bob- 00000001 is ringing
-- S| P/ denp- bob- 00000001 answer ed SI P/ denp-al i ce- 00000000
-- Native bridging SIP/ deno-alice-00000000 and
S| P/ denpb- bob- 00000001
== Spawn extension (users, 6002, 1) exited non-zero on
" SI P/ deno- al i ce- 00000000

As you can see, Alice called extension 6002 in the [docs:users] context, which in turn used the
Dial application to call Bob's phone. Bob's phone rang, and then answered the call. Asterisk then
bridged the two calls (one call from Alice to Asterisk, and the other from Asterisk to Bob), until
Alice hung up the phone.

At this point, you have a very basic PBX. It has two extensions which can dial each other, but
that's all. Before we move on, however, let's review a few basic troubleshooting steps that will
help you be more successful as you learn about Asterisk.

@ Basic PBX Troubleshooting

The most important troubleshooting step is to set your verbosity level to three (or
higher), and watch the command-line interface for errors or warnings as calls are
placed.

To ensure that your SIP phones are registered, type sip show peers at the Asterisk
CLI.

To see which context your SIP phones will send calls to, type sip show users.

To ensure that you've created the extensions correctly in the [users] context in the
dialplan, type dialplan show users.

To see which extension will be executed when you dial extension 6002, type
dialplan show 6002@users.

Sound Prompt Searching based on Channel Language

Dialplan Fundamentals

The dialplan is essential to the operation of any successful Asterisk system. In this module, we'll
help you learn the fundamental components of the Asterisk dialplan, and how to combine them to
begin scripting your own dialplan. We'll also add voice mail and a dial-by-name directory features
to your dialplan.

Contexts, Extensions, and Priorities

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The dialplan is organized into various sections, called contexts. Contexts are the basic
organizational unit within the dialplan, and as such, they keep different sections of the dialplan
independent from each other. We'll use contexts to enforce security boundaries between the
various parts of our dialplan, as well as to provide different classes of service to groups of users.

The syntax for a context is exactly the same as any other section heading in the configuration
files, as explained in Section 206.2.1. Sections and Settings. Simply place the context name in
square brackets. For example, here is the context we defined in the previous module:

Within each context, we can define one or more extensions. As explained in the previous
module, an extension is simply a named set of actions. Asterisk will perform each action, in
sequence, when that extension number is dialed. The syntax for an extension is:

nunber, priority, application([paraneter[,paraneter2...]])

11>

As an example, let's review extension 6001 from the previous module. It looks like:
As an example, let's review extension 6001 from the previous module. It looks like:

6001, 1, Di al (SI P/ denp-al i ce, 20)
11>

In this case, the extension number is 6001, the priority number is 1, the application is Dial(), and
the two parameters to the application are SIP/demo-alice and 20.
Within each extension, there must be one or more priorities. A priority is simply a sequence

number. The first priority on an extension is executed first. When it finishes, the second priority is
executed, and so forth.

" Priority numbers
Priority numbers must begin with 1, and must increment sequentially. If Asterisk can't find the next priority number, it will
terminate the call. We call this auto-fallthrough. Consider the example below:

6123, 1, do son®t hi ng
ext en=>6123, 2, do sonet hi ng el se

ext en=>6123, 4, do sonet hi ng di fferent

11>

In this case, Asterisk would execute priorites one and two, but would then terminate
the call, because it couldn't find priority number three.

Priority number can also be simplied by using the letter n in place of the priority numbers greater
than one. The letter n stands for next, and when Asterisk sees priority n it replaces it in memory

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

with the previous priority number plus one. Note that you must still explicitly declare priority
number one.

6123, 1, do sonet hi ng
ext en=>6123, n, do sonet hi ng el se
ext en=>6123, n, do sonething different]]>

You can also assign a label (or alias) to a particular priority number by placing the label in
parentheses directly after the priority number, as shown below. Labels make it easier to jump
back to a particular location within the extension at a later time.

6123, 1, do sonet hi ng
ext en=>6123, n(repeat), do sonet hi ng el se
ext en=>6123, n, do sonething different]]>

Here, we've assigned a label named repeat to the second priority.

Applications

Each priority in the dialplan calls an application. An application does some work on the channel,
such as answering a call or playing back a sound prompt. There are a wide variety of dialplan

applications available for your use. For a complete list of the dialplan applications available to
your installation of Asterisk, type core show applications at the Asterisk CLI.

Most applications take one or more parameters, which provide additional information to the
application or change its behavior. Parameters should be separated by commas.

% Syntax for Parameters
You'll often find examples of Asterisk dialplan code online and in print which use the pipe character or vertical bar character (|)

between parameters, as shown in this example:

6123, 1, application(one|two|three)]]>

This is a deprecated syntax, and will no longer work in newer versions of Asterisk.
Simply replace the pipe character with a comma, like this:

6123, 1, appl i cati on(one,two,three)]]>

Answer, Playback, and Hangup Applications

As its name suggests, the Answer() application answers an incoming call. The Answer()
application takes a delay (in milliseconds) as its first parameter. Adding a short delay is often
useful for ensuring that the remote endpoing has time to begin processing audio before you play
a sound prompt. Otherwise, you may not hear the very beginning of the prompt.

Knowing When to Answer a Call

When you're first learning your way around the Asterisk dialplan, it may be a bit confusing

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

knowing when to use the Answer() application, and when not to.

If Asterisk is simply going to pass the call off to another device using the Dial() application, you
probably don't want to call the answer the call first. If, on the other hand, you want Asterisk to
play sound prompts or gather input from the caller, it's probably a good idea to call the Answer()
application before doing anything else.

The Playback() application loads a sound prompt from disk and plays it to the caller, ignoring
any touch tone input from the caller. The first parameter to the dialplan application is the filename
of the sound prompt you wish to play, without a file extension. If the channel has not already
been answered, Playback() will answer the call before playing back the sound prompt, unless
you pass noanswer as the second parameter.

Exploring Sound Prompts

Asterisk comes with a wide variety of pre-recorded sound prompts. When you install Asterisk,
you can choose to install both core and extra sound packages in several different file formats.
Prompts are also available in several languages. To explore the sound files on your system,
simply find the sounds directory (this will be /var/lib/asterisk/sounds on most systems) and look
at the filenames. You'll find useful prompts ("Please enter the extension of the person you are
looking for..."), as well as as a number of off-the-wall prompts (such as "Weasels have eaten our
phone system"”, "The office has been overrun with iguanas”, and "Try to spend your time on hold
not thinking about a blue-eyed polar bear") as well.

i Sound Prompt Formats
Sound prompts come in a variety of file formats, such as .wav and .ulaw files. When asked to play a sound prompt from disk,
Asterisk plays the sound prompt with the file format that can most easily be converted to the CODEC of the current call. For
example, if the inbound call is using the alaw CODEC and the sound prompt is available in .gsm and .ulaw format, Asterisk will
play the .ulaw file because it requires fewer CPU cycles to transcode to the alaw CODEC.
You can type the command core show translation at the Asterisk CLI to see the transcoding times for various CODECs. The
times reported (in Asterisk 1.6.0 and later releases) are the number of microseconds it takes Asterisk to transcode one second
worth of audio. These times are calculated when Asterisk loads the codec modules, and often vary slightly from machine to
machine. To perform a current calculation of translation times, you can type the command core show translation recalc 60.

How Asterisk Searches for Sound Prompts Based on Channel Language

Each channel in Asterisk can be assigned a language by the channel driver. The channel's
language code is split, piece by piece (separated by underscores), and used to build paths to
look for sound prompts. Asterisk then uses the first file that is found.

This means that if we set the language to en_GB_female_ BT, for example, Asterisk would
search for files in:

...Isounds/en/GB/female/BT
...Isounds/en/GB/female

...Isounds/en/GB

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

...Isounds/en
...Isounds

This scheme makes it easy to add new sound prompts for various language variants, while falling
back to a more general prompt if there is no prompt recorded in the more specific variant.

The Hangup() application hangs up the current call. While not strictly necessary due to
auto-fallthrough (see the note on Priority numbers above), in general we recommend you add the
Hangup() application as the last priority in any extension.

Now let's put Answer(), Playback(), and Hangup() together to play a sample sound file. Place
this extension in your [docs:users] context:

6000, 1, Answer (500)
ext en=>6000, 2, Pl ayback(hel | o-wor | d)
ext en=>6000, 3, Hangup()]]>

Dial Application

Now that you've learned the basics of using dialplan applications, let's take a closer look at the
Dial() application that we used earlier in extensions 6001 and 6002. Dial() attempts to ring an
external device, and if the call is answered it bridges the two channels together and does any
necessary protocol or CODEC conversion. It also handles call progress responses (busy,
no-answer, ringing).

% Dial() and the Dialplan
Please note that if the Dial() application successfully bridges two channels together, that the call does not progress in the
dialplan. The call will only continue on to the next priority if the Dial() application is unable to bridge the calling channel to the
dialed device.

The Dial() application takes four parameters:

1. Devices

® Alist of the device(s) you want to call. Devices are specified as technology or channel driver, a forward slash, and the device or
account name. For example, SIP/demo-alice would use the SIP channel driver to call the device specified in the demo-alice
section of sip.conf. Devices using the IAX2 channel driver take the form of IAX2/demo-george, and DAHDI channels take the
form of DAHDI/1.

® When calling through a device (such as a gateway) or service provider to reach another number, the syntax is
technology/device/number such as SIP/my_provider/5551212 or DAHDI/4/5551212.

® To dial multiple devices at once, simply concatenate the devices together whith the ampersand character (&). The first device to
answer will get bridged with the caller, and the other endpoints will stop ringing.

® 6003, 1, Di al (SI P/ denp- al i ce&SI P/ denp- bob, 30)]] >

2. Timeout
® The number of seconds to allow the device(s) to ring before giving up and moving on to the next priority in the extension.
3. Options
® There are dozens of options that you can set on the outbound call, including call screening, distinctive ringing and more. Type
core show application dial at the Asterisk CLI for a complete list of all available options. If you want to specify multiple options,
simply concatenate them together. For example, if you want to use both the *m*and H options, you would set mH as the options
parameter.
4. URL
® The fourth parameter is a URL that will be sent to the endpoint. Few endpoints do anything with the URL, but there are a few
(softphones mostly) that do act on the URL.

Adding Voice Mail to Dialplan Extensions

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Adding voicemail to the extensions is quite simple. The Asterisk voicemail module provides two
key applications for dealing with voice mail. The first, named VoiceMail(), allows a caller to leave
a voice mail message in the specified mailbox. The second, called VoiceMailMain(), allows the
mailbox owner to retrieve their messages and change their greetings.

VoiceMail Application

The VoiceMail() applications takes two parameters:

1. Mailbox
® This parameter specifies the mailbox in which the voice mail message should be left. It should be a mailbox number and a voice
mail context concatenated with an at-sign (@), like 6001@default. (Voice mail boxes are divided out into various voice mail
context, similar to the way that extensions are broken up into dialplan contexts.) If the voice mail context is omitted, it will default
to the default voice mail context.
2. Options
® One or more options for controlling the mailbox greetings. The most popular options include the u option to play the unavailable
message, the b option to play the busy message, and the s option to skip the system-generated instructions.

VoiceMailMain Application

The VoiceMailMain() application allows the owner of a voice mail box to retrieve their messages,
as well as set mailbox options such as greetings and their PIN number. The VoiceMailMain()
application takes two parameters:

1. Mailbox - This parameter specifies the mailbox to log into. It should be a mailbox number and a voice mail context, concatenated with an
at-sign (@), like 6001 @default. If the voice mail context is omitted, it will default to the default voice mail context. If the mailbox number is
omitted, the system will prompt the caller for the mailbox number.

2. Options - One or more options for controlling the voicemail system. The most popular option is the s option, which skips asking for the
PIN number

Direct Access to Voice mail
Please exercise extreme caution when using the s option! With this option set, anyone which has access to this extension can
retrieve voicemail messages without entering the mailbox passcode.

Configuring Voice Mail Boxes

Now that we've covered the two main voice mail applications, let's look at the voicemail
configuration. Voice mail options and mailboxes are configured in the voicemail.conf
configuration file. This file has three major sections:

The [docs:general] section

Near the top of voicemail.conf, you'll find the [docs:general] section. This section of the

configuration file controls the general aspects of the voicemail system, such as the maximum
number of messages per mailbox, the maximum length of a voicemail message, and so forth.
Feel free to look at the sample voicemail.conf file for more details about the various settings.

The [docs:zonemessages] section
The [docs:zonemessages] section is used to define various timezones around the world. Each
mailbox can be assigned to a particular time zone, so that times and dates are announced

relative to their local time. The time zones specified in this section also control the way in which
times and dates are announced, such as reading the time of day in 24-hour format.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Voice Mail Contexts

After the [docs:general] and [docs:zonemessages] sections, any other bracketed section is a
voice mail context. Within each context, you can define one or more mailbox. To define a
mailbox, we set a mailbox number, a PIN, the mailbox owner's name, the primary email address,
a secondary email address, and a list of mailbox options (separated by the pipe character), as
shown below:

pin,full nane, emai| address,short enmil address, nail box options

11>

By way of explanation, the short email address is an email address that will receive shorter email
notifications suitable for mobile devices such as cell phones and pagers. It will never receive
attachments.

To add voice mail capabilities to extensions 6001 and 6002, add these three lines to the bottom
of voicemail.conf.

8762, Al i ce Jones, al i ce@xanpl e. com al i ce2@xanpl e. com att ach=no| t z=central | maxnsg=10
6002 => 9271, Bob Smith, bob@xanpl e. com bob2@xanpl e. com attach=yes|tz=eastern]]>

Now that we've defined the mailboxes, we can go into the Asterisk CLI and type voicemail
reload to get Asterisk to reload the voicemail.conf file. We can also verify that the new
mailboxes have been created by typing voicemail show users.

server*CLI > voicemail rel oad
Rel oadi ng voi cemai|l configuration...
server*CLI > voi cemni|l show users

Cont ext Moox User Zone NewiVs g
def aul t general New User 0
def aul t 1234 Exanpl e Mail box 0
ot her 1234 Conpany?2 User 0
vm deno 6001 Alice Jones central 0
vm deno 6002 Bob Smith eastern 0

5 voicemai|l users configured.

Now that we have mailboxes defined, let's add a priority to extensions 6001 and 6002 which will
allow callers to leave voice mail in their respective mailboxes. We'll also add an extension 6500
to allow Alice and Bob to check their voicemail messages. Please modify your [docs:users]
context in extensions.conf to look like the following:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

6000, 1, Answer (500)
ext en=>6000, 2, Pl ayback(hel | o-wor | d)
ext en=>6000, 3, Hangup()

ext en=>6001, 1, D al (SI P/ denp- al i ce, 20)
ext en=>6001, n, Voi ceMai | (6001@m deno, u)

ext en=>6002, 1, D al (S| P/ denp- bob, 20)
ext en=>6002, n, Voi ceMai | (6002@ m deno, u)

ext en=>6500, 1, Answer (500)
ext en=>6500, n, Voi ceMai | Mai n(@m denp)]] >

Reload the dialplan by typing dialplan reload at the Asterisk CLI. You can then test the voice
mail system by dialing from one phone to the other and waiting twenty seconds. You should then
be connected to the voicemail system, where you can leave a message. You should also be able
to dial extension 6500 to retrieve the voicemail message. When prompted, enter the mailbox
number and PIN number of the mailbox.

While in the VoiceMainMain() application, you can also record the mailbox owner's name,
unavailable greeting, and busy greeting by pressing 0 at the voicemail menu. Please record at
least the name greeting for both Alice and Bob before continuing on to the next section.

Go into lots of detail about the voicemail interface? How to move between messages, move
between folders, forward messages, etc?

Directory Application

The next application we'll cover is named Directory(), because it presents the callers with a
dial-by-name directory. It asks the caller to enter the first few digits of the person's name, and
then attempts to find matching names in the specified voice mail context in voicemail.conf. If the

matching mailboxes have a recorded name greeting, Asterisk will play that greeting. Otherwise,
Asterisk will spell out the person's name letter by letter.

The Directory() application takes three parameters:
voicemail_context

This is the context within voicemail.conf in which to search for a matching directory entry. If not
specified , the [docs:default] context will be searched.

dialplan_context

When the caller finds the directory entry they are looking for, Asterisk will dial the extension
matching their mailbox in this context.

options

A set of options for controlling the dial-by-name directory. Common options include f for
searching based on first name instead of last name and e to read the extension number as well

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

as the name.

% Directory() Options
To see the complete list of options for the Directory() application, type core show application Directory at the Asterisk CLI.

Let's add a dial-by-name directory to our dialplan. Simply add this line to your [docs:users]
context in extensions.conf:

6501, 1, Di rect ory(vm deno, users, ef)

11>
Now you should be able to dial extension 6501 to test your dial-by-name directory.
Auto-attendant and IVR Menus

In this section, we'll cover the how to build voice menus, often referred to as auto-attedants and
IVR menus. IVR stands for Interactive Voice Response, and is used to describe a system where
a caller navigates through a system by using the touch-tone keys on their phone keypad.

When the caller presses a key on their phone keypad, the phone emits two tones, known as
DTMF tones. DTMF stands for Dual Tone Multi-Frequency. Asterisk recognizes the DTMF tones
and responds accordingly. For more information on DTMF tones, see [Section 440.3. DTMF
Dialing].

Let's dive in and learn how to build IVR menus in the Asterisk dialplan!

Background and WaitExten Applications

The Background() application plays a sound prompt, but listens for DTMF input. Asterisk then
tries to find an extension in the current dialplan context that matches the DTMF input. If it finds a
matching extension, Asterisk will send the call to that extension.

The Background() application takes the name of the sound prompt as the first parameter just like
the Playback() application, so remember not to include the file extension.

The Background() application plays a sound prompt, but listens for DTMF input. Asterisk then
tries to find an extension in the current dialplan context that matches the DTMF input. If it finds a
matching extension, Asterisk will send the call to that extension.

The Background() application takes the name of the sound prompt as the first parameter just
like the Playback() application, so remember not to include the file extension.

Multiple Prompts
If you have multiple prompts you'd like to play during the Background() application, simply concatenate them together with the
ampersand (&) character, like this:

6123, 1, Backgr ound(pr onpt 1&pr onpt 2&pr onpt 3)

11>

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

One problems you may encounter with the Background() application is that you may want
Asterisk to wait a few more seconds after playing the sound prompt. In order to do this, you can
call the WaitExten application. You'll usually see the WaitExten application called immediately
after the Background() application. The first parameter to the WaitExten application is the
number of seconds to wait for the caller to enter an extension. If you don't supply the first
parameter, Asterisk will use the built-in response timeout.

Goto Application and Priority Labels

Before we create a simple auto-attendant menu, let's cover a couple of other useful dialplan
applications. The Goto() application allows us to jump from one position in the dialplan to
another. The parameters to the Goto() application are slightly more complicated than with the
other applications we've looked at so far, but don't let that scare you off.

The Goto() application can be called with either one, two, or three parameters. If you call the
Goto() application with a single parameter, Asterisk will jump to the specified priority (or its label)
within the current extension. If you specify two parameters, Asterisk will read the first as an
extension within the current context to jump to, and the second parameter as the priority (or
label) within that extension. If you pass three parameters to the application, Asterisk will assume
they are the context, extension, and priority (respectively) to jump to.

SayDigits, SayNumber, SayAlpha, and SayPhonetic Applications

While not exactly related to auto-attendant menus, we'll introduce some applications to read back
various pieces of information back to the caller. The SayDigits() and SayNumber() applications
read the specified number back to caller. To use the SayDigits() and SayNumber() application
simply pass it the number you'd like it to say as the first parameter.

The SayDigits() application reads the specified number one digit at a time. For example, if you
called SayDigits(123), Asterisk would read back "one two three". On the other hand, the
SayNumber() application reads back the number as if it were a whole number. For example, if
you called SayNumber(123) Asterisk would read back "one hundred twenty three".

The SayAlpha() and SayPhonetic() applications are used to spell an alphanumeric string back
to the caller. The SayAlpha() reads the specified string one letter at a time. For example,
SayAlpha(hello) would read spell the word "hello” one letter at a time. The SayPhonetic() spells
back a string one letter at a time, using the international phonetic alphabet. For example,
SayPhonetic(hello) would read back "Hotel Echo Lima Lima Oscar".

We'll use these four applications to read back various data to the caller througout this guide. In
the meantime, please feel free to add some sample extensions to your dialplan to try out these
applications. Here are some examples:

6592, 1, SayDi gi t s(123)

ext en=>6593, 1, SayNunber (123)

ext en=>6594, 1, SayAl pha(hel | 0)

ext en=>6595, 1, SayPhonetic(hello)]]>

Creating a Simple IVR Menu

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Let's go ahead and apply what we've learned about the various dialplan applications by building
a very simple auto-attendant menu. It is common practice to create an auto-attendant or IVR
menu in a new context, so that it remains independant of the other extensions in the dialplan.
Please add the following to your dialplan (the extensions.conf file) to create a new demo-menu
context. In this new context, we'll create a simple menu that prompts you to enter one or two, and
then it will read back what you're entered.

#) Sample Sound Prompts
Please note that the example below (and many of the other examples in this guide) use sound prompts that are part of the extra
sounds packages. If you didn't install the extra sounds earlier, now might be a good time to do that.

s, 1, Answer (500)
ext en=>s, n(| oop), Backgr ound(pr ess- 1&or &pr ess- 2)
ext en=>s, n, Wai t Ext en()

exten=>1, 1, Pl ayback(you- ent er ed)
ext en=>1, n, SayNunber (1)
ext en=>1, n, Got o(s, | oop)

ext en=>2, 1, Pl ayback(you- ent er ed)
ext en=>2, n, SayNunber (2)
exten=>2, n, Goto(s,loop)]]>

Before we can use the demo menu above, we need to add an extension to the [docs:users]
context to redirect the caller to our menu. Add this line to the [docs:users] context in your
dialplan:

6598, 1, Got o(deno- nenu, s, 1)
11>

Reload your dialplan, and then try dialing extension 6598 to test your auto-attendant menu.
Handling Special Extensions

We have the basics of an auto-attendant created, but now let's make it a bit more robust. We
need to be able to handle special situations, such as when the caller enters an invalid extension,
or doesn't enter an extension at all. Asterisk has a set of special extensions for dealing with
situations like there. They all are named with a single letter, so we recommend you don't create
any other extensions named with a single letter. The most common special extensions include:

i: the invalid entry extension

If Asterisk can't find an extension in the current context that matches the digits dialed during the
Background() or WaitExten() applications, it will send the call to the i extension. You can then
handle the call however you see fit.

t: the reponse timeout extension

When the caller waits too long before entering a response to the Background() or WaitExten()
applications, and there are no more priorities in the current extension, the call is sent to the t

extension.

S: the start extension

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

When an analog call comes into Asterisk, the call is sent to the s extension. The s extension is
also used in macros.

Please note that the s extension is not a catch-all extension. It's simply the location that analog
calls and macros begin. In our example above, it simply makes a convenient extension to use
that can't be easily dialed from the Background() and WaitExten() applications.

h: the hangup extension

When a call is hung up, Asterisk executes the h extension in the current context. This is typically
used for some sort of clean-up after a call has been completed.

o: the operator extension

If a caller presses the zero key on their phone keypad while recording a voice mail message, and
the o extension exists, the caller will be redirected to the o extension. This is typically used so
that the caller can press zero to reach an operator.

a: the assistant extension

This extension is similar to the o extension, only it gets triggered when the caller presses the

asterisk (*) key while recording a voice mail message. This is typically used to reach an
assistant.

Let's add a few more lines to our [docs:demo-menu] context, to handle invalid entries and
timeouts. Modify your [docs:demo-menu] context so that it matches the one below:

s, 1, Answer (500)
ext en=>s, n(| oop), Backgr ound(pr ess- 1&or &pr ess- 2)
ext en=>s, n, i t Ext en()

exten=>1, 1, Pl ayback(you- ent er ed)
ext en=>1, n, SayNunber (1)
ext en=>1, n, Goto(s, | oop)

exten=>2, 1, Pl ayback(you- ent er ed)
ext en=>2, n, SayNunber (2)
exten=>2, n, Goto(s, | oop)

exten=>i, 1, Pl ayback(option-is-invalid)
exten=>i, n, Goto(s, | oop)

exten=>t, 1, Pl ayback(are-you-still-there)
exten=>t, n, Goto(s,loop)]]>

Now dial your auto-attendant menu again (by dialing extension 6598), and try entering an invalid
option (such as 3) at the auto-attendant menu. If you watch the Asterisk command-line interface
while you dial and your verbosity level is three or higher, you should see something similar to the
following:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

-- Executing [6598@sers: 1] Goto("SI P/ deno-alice-00000008",
"deno- nenu, s, 1") in new stack

-- Goto (deno-nenu,s, 1)

-- Executing [s@leno-nenu: 1] Answer ("SI P/ denp- al i ce- 00000008",
"500") in new stack

-- Executing [s@leno-nenu: 2] BackG ound(" Sl P/ deno- al i ce- 00000008",
"press-1&or &ress-2") in new stack

-- <S8l P/ deno-al i ce-00000008> Pl ayi ng 'press-1.gsm (language 'en')
-- <SI P/ denp- al i ce-00000008> Pl aying 'or.gsm (language 'en')
-- <SI P/ denp-al i ce-00000008> Pl ayi ng ' press-2.gsm (| anguage
-- Invalid extension '3" in context 'denp-nmenu' on

SI P/ denp- al i ce- 00000008

-- Executing [i @eno-nenu: 1] Pl ayback(" Sl P/ deno- al i ce- 00000008",
"option-is-invalid') in new stack

-- <S8l P/ deno- al i ce-00000008> Pl ayi ng 'option-is-invalid.gsm

(I anguage 'en')

-- Executing [i @eno-nenu: 2] Goto("SI P/ denp-al i ce-00000008",
"s,loop") in new stack

-- CGoto (deno-nenu,s, 2)

-- Executing [s@leno-nenu: 2] BackG ound(" Sl P/ deno- al i ce- 00000008",
"press-1&or &press-2") in new stack

-- <S8l P/ deno-al i ce-00000008> Pl ayi ng 'press-1.gsnm (language 'en')
-- <SI P/ denp- al i ce-00000008> Pl aying 'or.gsm (language 'en')
-- <SI P/ denp- al i ce-00000008> Pl ayi ng ' press-2.gsm (| anguage

en')

en')

If you don't enter anything at the auto-attendant menu and instead wait approximately ten
seconds, you should hear (and see) Asterisk go to the t extension as well.

Record Application

For creating your own auto-attendant or IVR menus, you're probably going to want to record your
own custom prompts. An easy way to do this is with the Record() application. The Record()
application plays a beep, and then begins recording audio until you press the hash key (#) on
your keypad. It then saves the audio to the filename specified as the first parameter to the
application and continues on to the next priority in the extension. If you hang up the call before
pressing the hash key, the audio will not be recorded. For example, the following extension
records a sound prompt called custom-menu in the gsm format in the en/ sub-directory, and
then plays it back to you.

6597, 1, Answer (500)

exten => 6597, n, Record(en/ cust om menu. gsmn
exten => 6597, n, Wit (1)

exten => 6597, n, Pl ayback(cust om menu)
exten => 6597, n, Hangup()]]>

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

i Recording Formats
When specifiying a file extension when using the Record() application, you must choose a file extension which represents one
of the supported file formats in Asterisk. For the complete list of file formats supported in your Asterisk installation, type core
show file formats at the Asterisk command-line interface.

You've now learned the basics of how to create a simple auto-attendant menu. Now let's build a
more practical menu for callers to be able to reach Alice or Bob or the dial-by-name directory.

Procedure 216.1. Building a Practical Auto-Attendant Menu

1. Add an extension 6599 to the [docs:users] context which sends the calls to a new context we'll build called [docs:day-menu]. Your
extension should look something like:

® 6599, 1, Got o(day- nenu, s, 1)]]>
2. Add a new context called [docs:day-menu], with the following contents:

® s, 1, Answer (500)
ext en=>s, n(pl ayback), Backgr ound(cust om nenu)
ext en=>s, n, Wai t Ext en()

exten=>1, 1, Got o(users, 6001, 1)
exten=>2, 1, Got o(users, 6002, 1)

exten=>9, 1, Di rectory(vm deno, users, fe)
ext en=>* 1, Voi ceMai | Mai n(@ m denp)

exten=>i, 1, Pl ayback(option-is-invalid)
exten=>i, n, Goto(s, | oop)

exten=>t, 1, Pl ayback(are-you-still-there)
exten=>t, n, Goto(s,loop)]]>

3. Dial extension 6597 to record your auto-attendant sound prompt. Your sound prompt should say something like "Thank you for calling!
Press one for Alice, press two for Bob, or press 9 for a company directory". Press the hash key (#) on your keypad when you're finished
recording, and Asterisk will play it back to you. If you don't like it, simply dial extension 6597 again to re-record it.

4. Dial extension 6599 to test your auto-attendant menu.

In just a few lines of code, you've created your own auto-attendant menu. Feel free to experiment
with your auto-attendant menu before moving on to the next section.

Dialplan Architecture

In this section, we'll begin adding structure to our dialplan. We'll begin by talking about variables
and how to use them, as well as how to manipulate them. Then we'll cover more advanced
topics, such as pattern matching and using include statements to build classes of functionality.

Variables

Variables are used in most programming and scripting languages. In Asterisk, we can use
variables to simplify our dialplan and begin to add logic to the system. A variable is simply a
container that has both a name and a value. For example, we can have a variable named
COUNT which has a value of three. Later on, we'll show you how to route calls based on the
value of a variable. Before we do that, however, let's learn a bit more about variables. The

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

names of variables are case-sensitive, so COUNT is different than Count and count. Any
channel variables created by Asterisk will have names that are completely upper-case, but for
your own channels you can name them however you would like.

In Asterisk, we have two different types of variables: channel variables and global variables.
Channel Variables Basics

Channel variables are variables that are set for the current channel (one leg of a bridged phone
call). They exist for the lifetime of the channel, and then go away when that channel is hung up.
Channel variables on one particular channel are completely independent of channel variables on
any other channels; in other words, two channels could each have variables called

Channel variables are variables that are set for the current channel (one leg of a bridged phone
call). They exist for the lifetime of the channel, and then go away when that channel is hung up.
Channel variables on one particular channel are completely independent of channel variables on
any other channels; in other words, two channels could each have variables called COUNT with
different values.

To assign a value to a channel variable, we use the Set() application. Here's an example of
setting a variable called COUNT to a value of 3.

with different values.

To assign a value to a channel variable, we use the Set() application. Here's an example of
setting a variable called COUNT to a value of 3.

6123, 1, Set (COUNT=3)
11>

To retrieve the value of a variable, we use a special syntax. We put a dollar sign and curly braces
around the variable name, like ${COUNT}

When Asterisk sees the dollar sign and curly braces around a variable name, it substitutes in the
value of the variable. Let's look at an example with the SayNumber() application.

6123, 1, Set (COUNT=3)
ext en=>6123, n, SayNunber (${ COUNT})
11>

In the second line of this example, Asterisk replaces the ${COUNT} text with the value of the
COUNT variable, so that it ends up calling SayNumber(3).

Global Variables Basics
Global variables are variables that don't live on one particular channel — they pertain to all calls

on the system. They have global scope. There are two ways to set a global variable. The first is
to declare the variable in the [docs:globals] section of extensions.conf, like this:

You can also set global variables from dialplan logic using the GLOBAL () dialplan function along
with the Set() application. Simply use the syntax:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

6124, 1, Set (GLOBAL(MYGLOBALVAR) =someval ue)
11>

To retrieve the value of a global channel variable, use the same syntax as you would if you were
retrieving the value of a channel variable.

Manipulating Variables Basics

It's often useful to do string manipulation on a variable. Let's say, for example, that we have a
variable named NUMBER which represents a number we'd like to call, and we want to strip off
the first digit before dialing the number. Asterisk provides a special syntax for doing just that,
which looks like ${variable[:skip[docs::length]}.

The optional skip field tells Asterisk how many digits to strip off the front of the value. For
example, if NUMBER were set to a value of 98765, then ${NUMBER:2} would tell Asterisk to
remove the first two digits and return 765.

If the skip field is negative, Asterisk will instead return the specified number of digits from the end
of the number. As an example, if NUMBER were set to a value of 98765, then ${NUMBER:-2}
would tell Asterisk to return the last two digits of the variable, or 65.

If the optional length field is set, Asterisk will return at most the specified number of digits. As an
example, if NUMBER were set to a value of 98765, then ${NUMBER:0:3} would tell Asterisk not
to skip any characters in the beginning, but to then return only the three characters from that
point, or 987. By that same token, ${NUMBER:1:3} would return 876.

Variable Inheritance Basics

When building your Asterisk dialplan, it may be useful to have one channel inherit variables from
another channel. For example, imagine that Alice's call has a channel variable containing an
account code, and you'd like to pass that variable on to Bob's channel when Alice's call gets
bridged to Bob. We call this variable inheritance. There are two levels of variable inheritance in
Asterisk: single inheritance and multiple inheritance.

Multiple Inheritance

Multiple inheritance means that a channel variable will be inherited by created (spawned)
channels, and it will continue to be inherited by any other channels created by the spawned
channels. To set multiple inheritance on a channel, preface the variable name with two
underscores when giving it a value with the Set() application, as shown below.

6123, 1, Set (__ACCOUNT=5551212)
11>

Single Inheritance

Single inheritance means that a channel variable will be inherited by created (spawned)
channels, but not propogate from there to any other swawned channels. To follow our example
above, if Alice sets a channel variable with single inheritance and calls Bob, Bob's channel will
inherit that channel variable, but the channel variable won't get inherited by any channels that

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

might get spawned by Bob's channel (if the call gets transferred, for example). To set single
inheritance on a channel, preface the variable name with an underscore when giving it a value
with the Set() application, as shown below.

6123, 1, Set (_ACCOUNT=5551212)
11>

Using the CONTEXT, EXTEN, PRIORITY, UNIQUEID, and CHANNEL Variables

Now that you've learned a bit about variables, let's look at a few of the variables that Asterisk
automatically creates.

Asterisk creates channel variables named CONTEXT, EXTEN, and PRIORITY which contain the
current context, extension, and priority. We'll use them in pattern matching (below), as well as
when we talk about macros in [Section 308.10. Macros]. Until then, let's show a trivial example of
using ${EXTEN} to read back the current extension number.

ext en=>6123, 1, SayNunber (${ EXTEN})

If you were to add this extension to the [docs:users] context of your dialplan and reload the
dialplan, you could call extension 6123 and hear Asterisk read back the extension number to
you.

Another channel variable that Asterisk automatically creates is the UNIQUEID variable. Each
channel within Asterisk receives a unique identifier, and that identifier is stored in the UNIQUEID
variable. The UNIQUEID is in the form of 1267568856.11, where 1267568856 is the Unix epoch,
and 11 shows that this is the eleventh call on the Asterisk system since it was last restarted.

Last but not least, we should mention the CHANNEL variable. In addition to a unique identifier,
each channel is also given a channel name and that channel name is set in the CHANNEL
variable. A SIP call, for example, might have a channel name that looks like
SIP/george-0000003b, for example.

The Verbose and NoOp Applications

Asterisk has a convenient dialplan applications for printing information to the command-line
interface, called Verbose(). The Verbose() application takes two parameters: the first parameter
is the minimum verbosity level at which to print the message, and the second parameter is the
message to print. This extension would print the current channel identifier and unique identifier
for the current call, if the verbosity level is two or higher.

ext en=>6123, 1, Ver bose(2, The channel nane is ${CHANNEL})
ext en=>6123, n, Ver bose(2, The unique id is ${UN QUEI D})

The NoOp() application stands for "No Operation”. In other words, it does nothing. Because of
the way Asterisk prints everything to the console if your verbosity level is three or higher,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

however, the NoOp() application is often used to print debugging information to the console like
the Verbose() does. While you'll probably come across examples of the NoOp() application in
other examples, we recommend you use the Verbose() application instead.

The Read Application

The Read() application allows you to play a sound prompt to the caller and retrieve DTMF input
from the caller, and save that input in a variable. The first parameter to the Read() application is
the name of the variable to create, and the second is the sound prompt or prompts to play. (If you
want multiple prompts, simply concatenate them together with ampersands, just like you would
with the Background() application.) There are some additional parameters that you can pass to
the Read() application to control the number of digits, timeouts, and so forth. You can get a
complete list by running the core show application read command at the Asterisk CLI. If no
timeout is specified, Read() will finish when the caller presses the hash key (#) on their keypad.

exten=>6123, 1, Read(Di gi t s, ent er - ext - of - per son)
ext en=>6123, n, Pl ayback(you-ent er ed)
ext en=>6123, n, SayNunber (${Di gi t s})

In this example, the Read() application plays a sound prompt which says "Please enter the
extension of the person you are looking for", and saves the captured digits in a variable called
Digits. It then plays a sound prompt which says "You entered" and then reads back the value of
the Digits variable.

Pattern Matching

The next concept we'll cover is called pattern matching. Pattern matching allows us to create
extension patterns in our dialplan that match more than one possible dialed number. Pattern
matching saves us from having to create an extension in the dialplan for every possible number
that might be dialed.

When Alice dials a number on her phone, Asterisk first looks for an extension (in the context
specified by the channel driver configuration) that matches exactly what Alice dialed. If there's no
exact match, Asterisk then looks for a pattern match that matches. After we show the syntax and
some basic examples of pattern matching, we'll explain how Asterisk finds the best match if there
are two or more patterns which match the dialed number.

Pattern matches always begin with an underscore. This is how Asterisk recognizes that the
extension is a pattern and not just an extension with a funny name. Within the pattern, we use
various letter and characters to represent sets or ranges of numbers. Here are the most common
letters:

X

The letter X represents a single digit from 0 to 9.

Z

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The letter Z represents any digit from 1 to 9.
N
The letter N represents a single digit from 2 to 9.

Now let's look at a sample pattern. If you wanted to match all four-digit numbers that had the first
two digits as six and four, you would create an extension that looks like:

ext en=>_64XX, 1, SayDi gi t s(${ EXTEN})

In this example, each X represents a single digit, with any value from zero to nine. We're
essentially saying "The first digit must be a six, the second digit must be a four, the third digit can
be anything from zero to nine, and the fourth digit can be anything from zero to nine".

If we want to be more specific about a range of numbers, we can put those numbers or number
ranges in square brackets. For example, what if we wanted the second digit to be either a three
or a four? One way would be to create two patterns (_64XX and _63XX), but a more compact
method would be to do _6[docs:34]XX. This specifies that the first digit must be a six, the
second digit can be either a three or a four, and that the last two digits can be anything from zero
to nine.

You can also use ranges within square brackets. For example, [docs:1-468] would match a
single digit from one through four or six or eight. It does not match any number from one to four
hundred sixty-eight!

Within Asterisk patterns, we can also use a couple of other characters to represent ranges of
numbers. The period character (.) within a pattern matches on one or more remaining digits in
the pattern. It typically appears at the end of a pattern match, especially when you want to match
extensions of an indeterminate length. As an example, the pattern _9876. would match any
number that began with 9876 and had at least one more character or digit.

The exclamation mark (!) character is similar to the period and also matches one more more
remaining characters, but is used in overlap dialing. For example, _9876! would match any
number that began with 9876, and would respond that the number was complete as soon as
there was an unambiguous match.

@ Be Careful With Wildcards in Pattern Matches
Please be extremely cautious when using the period and exclamation mark characters in your pattern matches. They match
more than just digits, they also match on characters as well, and if you're not careful to filter the input from your callers, a
malicious caller might try to use these wildcards to bypass security boundaries on your system.

For a more complete explanation of this topic and how you can protect yourself,
please refer to the README-SERIOUSLY .bestpractices.txt file in the Asterisk
source code.

Now let's show what happens when there is more than one pattern that matches the dialed

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

number. How does Asterisk know which pattern to choose as the best match?

Asterisk uses a simple set of rules to determine the best match. They are:

1. Examine the first digit eliminate any patterns which don't match the first digit of the dialed number

2. Sort the remaining patterns based on the most constrained match for the current digit. By most constrained, we mean the pattern that has
the fewest possible matches for this digit. As an example, the N character has 8 possible matches (two through nine), while an X has ten
possible matches.

3. In the case of a match, sort the patterns in ASCII sort order. For example, _[docs:234]X and _[docs:345]X have three possible matches
in the first digit, but 234 comes before 345 in ASCII sort order.

4. Move on to the next digit (moving digit by digit from left to right), and eliminate any patterns which don't match the current digit of the
dialed number. Then continue back at step number two.

5. After you've examined all the digits, return the match that has been sorted to the top of the list.

Let's look at an example to better understand how this works. Let's assume Alice dials extension
6401, and she has the following patterns in her dialplan:

exten=>_64XX, 1, SayAl pha(A)
ext en=>_640X, 1, SayAl pha(B)
ext en=>_64NX, 1, SayAl pha(C)
ext en=>_6XX1, 1, SayAl pha(D)

Can you tell (without reading ahead) which one would match?

Let's walk step by step through the rules explained above, and see what happens when Alice
dials 6401.

Rule 1
We look at the first digit, and all the patterns match.
Rule 2

Each of the patterns have the same number of possible matches on this digit (one match — the
number six).

Rule 3
We sort the patterns in ASCII sort order.
Rule 4

We move on to the second digit. There are no patterns that can be eliminated based on the
second digit, so we go back to rule two for this digit.

Rule 2

The three patterns with a 4 in the second digit are more constrained than the X, so they get
sorted to the top.

Rule 3

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The top three patterns get sorted in ASCII sort order, since they are tied in the number of
possible matches.

Rule 4

We move on to the third digit. The third pattern (the one that would call SayAlpha(C)) is
eliminated, because the third digit of this pattern (the N) doesn't match the third dialed digit (the O
). The other patterns match, so we now go back to rule two.

Rule 2

The second pattern (the one that would call SayAlpha(B)) is the most constrained, as it only has
a single possibility, so it gets sorted to the top.

Rule 3
There are no ties at the top of the sorting table, so we can move on to rule four.
Rule 4

We move on to the fourth digit. Since all the remaining patterns match, the second pattern
remains at the top of the sorting table. You might be asking yourself... "What about the fourth
pattern? Isn't it more constrained?" Remember that it was less constrained in an earlier digit, so it
would only match if none of the other patterns above it in the sorting table matched on this digit.

Step 5

Since we have run out of digits, we know that Asterisk will match on the second pattern, as it is
the one at the top of the sorting table.

To verify that Asterisk actually does sort the extensions in the manner that we've described, add
the following extensions to the [docs:users] context of your own dialplan.
{noformat}}exten=>_64XX,1,SayAlpha(A)

exten=>_640X,1,SayAlpha(B)

exten=>_64NX,1,SayAlpha(C)

exten=>_6XX1,1,SayAlpha(D)

Rel oad the dial pl an, and then type *di al pl an show 6104@isers* at the
Asterisk CLI. Asterisk will show you what would match if you were to
di al extension *6104* in the *\[docs:users\]* context.

server*CLI> dialplan show 6401@users
[Context 'users' created by 'pbx_config']
' 640X' => 1. SayAlpha(B) [pbx_config]
' 64XX' => 1. SayAlpha(A) [pbx_config]
' 6XX1'=> 1. SayAlpha(D) [pbx_config]

_ ors-(3-priorities) __

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

You can then dial extension 6104 to try it out on your own.

i) Be Careful with Pattern Matching
Please be aware that because of the way auto-fallthrough works, if Asterisk can't find the next priority number for the current
extension or pattern match, it will also look for that same priority in a less specific pattern match. Consider the following
example:

6410, 1, SayDi gi t s(987)
ext en=>_641X, 1, SayDi gi t s(12345)
ext en=>_641X, n, SayDi gi t s(54321)

11>

If you were to dial extension 6410, you'd hear "nine eight seven five four three two
one".

We strongly recommend you make the Hangup() application be the last priority of
any extension to avoid this problem, unless you purposely want to fall through to a
less specific match.

Include Statements

Include statements allow us to split up the functionality in our dialplan into smaller chunks, and
then have Asterisk search multiple contexts for a dialed extension. Most commonly, this
functionality is used to provide security boundaries between different classes of callers.

It is important to remember that when calls come into the Asterisk dialplan, they get directed to a
particular context by the channel driver. Asterisk then begins looking for the dialed extension in
the context specified by the channel driver. By using include statements, we can include other
contexts in the search for the dialed extension.

Asterisk supports two different types of include statements: regular includes and time-based
includes.

Include Statements Basics

To set the stage for our explanation of include statements, let's say that we want to organize our
dialplan and create a new context called [docs:features]. We'll leave our extensions 6001 and
6002 for Alice and Bob in the [docs:users] context, and place extensions such as 6500 in the
new [docs:features] context. When calls come into the users context and doesn't find a
matching extension, the include statement tells Asterisk to also look in the new [docs:features]
context.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The syntax for an include statement is very simple. You simply write include=> and then the
name of the context you'd like to include from the existing context. If we reorganize our dialplan
to add a [docs:features] context, it might look something like this:

[users]
i ncl ude => features

ext en=>6001, 1, Di al (SI P/ denp-al i ce, 20)
ext en=>6001, n, Voi ceMai | (6001@ m deno, u)

ext en=>6002, 1, Di al (SI P/ deno- bob, 20)
ext en=>6002, n, Voi ceMai | (6002@ m deno, u)

[features]

ext en=>6000, 1, Answer (500)

ext en=>6000, 2, Pl ayback(hel | o-wor| d)
ext en=>6000, 3, Hangup()

ext en=>6500, 1, Answer (500)
ext en=>6500, n, Voi ceMai | Mai n(@ m deno)

@ Location of Include Statements
Please note that in the example above, we placed the include statement before extensions 6001 and 6002. It could have just as
well come after. Asterisk will always try to find a matching extension in the current context first, and only follow the include
statement to a new context if there isn't anything that matches in the current context.

Using Include Statements to Create Classes of Service

Now that we've shown the basic syntax of include statements, let's put some include statements
to good use. Include statements are often used to build chains of functionality or classes of
service. In this example, we're going to build several different contexts, each with its own type of
outbound calling. We'll then use include statements to chain these contexts together.

i Numbering Plans
The examples in this section use patterns designed for the North American Number Plan, and may not fit your individual
circumstances. Feel free to use this example as a guide as you build your own dialplan.

In these examples, we're going to assuming that a seven-digit number that does not
begin with a zero or a one is a local (non-toll) call. Ten-digit numbers (where neither
the first or fourth digits begin with zero or one) are also treated as local calls. A one,
followed by ten digits (where neither the first or fourth digits begin with zero or one) is
considered a long-distance (toll) call. Again, feel free to modify these examples to fit
your own particular circumstances.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

iy Outbound dialing
These examples assume that you have a SIP provider named provider configured in sip.conf. The examples dial out through
this SIP provider using the SIP/provider/number syntax.
Obviously, these examples won't work unless you setup a SIP provider for outbound calls, or replace this syntax with some
other type of outbound connection. For more information on configuring a SIP provider, see [Section 420. The SIP Protocol]. For
analog connectivity information, see [Section 441. Analog Telephony with DAHDI]. For more information on connectivity via
digital circuits, see [Section 450. Basics of Digital Telephony]

First, let's create a new context for local calls.

_NXXXXXX, 1, Di al (S| P/ provi der/ ${ EXTEN})

; ten-digit local nunbers

exten => _NXXNXXXXXX, 1, Di al (Sl P/ provi der/ ${ EXTEN})

; enmergency services (911), and other three-digit services
exten => NXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; ifyou don't find a match in thiscontext, ook in [users]
include => users

11>

Remember that the variable ${EXTEN} will get replaced with the dialed extension. For example,
if Bob dials 5551212 in the local context, Asterisk will execute the Dial application with
SIP/provider/5551212 as the first parameter. (This syntax means "Dial out to the account named
provider using the SIP channel driver, and dial the number 5551212.)

Next, we'll build a long-distance context, and link it back to the local context with an include
statement. This way, if you dial a local number and your phone's channel driver sends the call to
the longdistance context, Asterisk will search the local context if it doesn't find a matching
pattern in the longdistance context.

_INXXNXXXXXX, 1, Di al (Sl P/ provi der/ ${ EXTEN})
; ifyou don't find a match inthiscontext, ook in[local]
include => local]]>

Last but not least, let's add an [docs:international] context. In North America, you dial 011 to
signify that you're going to dial an international number.

_011.,1, D al (SI P/ provider/ ${ EXTEN})
; ifyoudon't find a match inthiscontext, ook in[longdistance]
include => | ongdi stance]]>

And there we have it -- a simple chain of contexts going from most privileged (international calls)
down to lease privileged (local calling).

At this point, you may be asking yourself, "What's the big deal? Why did we need to break them
up into contexts, if they're all going out the same outbound connection?" That's a great question!
The primary reason for breaking the different classes of calls into separate contexts is so that we
can enforce some security boundaries.

Do you remember what we said earlier, that the channel drivers point inbound calls at a particular
context? In this case, if we point a phone at the [docs:local] context, it could only make local
and internal calls. On the other hand, if we were to point it at the [docs:international] context, it
could make international and long-distance and local and internal calls. Essentially, we've
created different classes of service by chaining contexts together with include statements, and

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

using the channel driver configuration files to point different phones at different contexts along
the chain.

Many people find it instructive to look at a visual diagram at this point, so let's draw ourselves a
map of the contexts we've created so far.

Insert graphic showing chain of includes from international through long-distance to local
and to users and features

In this graphic, we've illustrated the various contexts and how they work together. We've also
shown that Alice's phone is pointed at the [docs:international] context, while Bob's phone is
only pointed at the [docs:local] context.

Please take the next few minutes and implement a series of chained contexts into your own
dialplan, similar to what we've explained above. You can then change the configuration for Alice
and Bob (in sip.conf, since they're SIP phones) to point to different contexts, and see what
happens when you attempt to make various types of calls from each phone.

Configuration and Operation

Here be the top-level page for all of the Asterisk Reference Information as found in the doc/ and
doc/tex subdirectories of the Asterisk source.

It's been there all along, but now it's here, in an easy to view format (no need to install 800MB of
dependancies in Debian just to convert .tex into PDF), that's also searchable. Hoo-ray!

Asterisk Calendaring

The Asterisk Calendaring APl aims to be a generic interface for integrating Asterisk with various
calendaring technologies. The goal is to be able to support reading and writing of calendar
events as well as allowing notification of pending events through the Asterisk dialplan.

There are three calendaring modules that ship with Asterisk that provide support for iCalendar,
CalDAV, and Microsoft Exchange Server calendars. All three modules support event notification.
Both CalDAV and Exchange support reading and writing calendars, while iCalendar is a
read-only format.

Configuring Asterisk Calendaring

All asterisk calendaring modules are configured through calender.conf. Each calendar module
can define its own set of required parameters in addition to the parameters available to all
calendar types. An effort has been made to keep all options the same in all calendaring modules,

but some options will diverge over time as features are added to each module.
An example calendar.conf might look like:

Module-independent settings

The settings related to calendar event notification are handled by the core calendaring API.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

These settings are:
® autoreminder - This allows the overriding of any alarms that may or may not be set for a calendar event. It is specified in minutes.
* refresh - How often to refresh the calendar data; specified in minutes.

® timeframe - How far into the future each calendar refresh should look. This is the amount of data that will be visible to queries from the
dialplan. This setting should always be greater than or equal to the refresh setting or events may be missed. It is specified in minutes.

® channel - The channel that should be used for making the notification attempt.

® waittime - How long to wait, in seconds, for the channel to answer a notification attempt. There are two ways to specify how to handle a
notification. One option is providing a context and extension, while the other is providing an application and the arguments to that
application. One (and only one) of these options should be provided.

® context - The context of the extension to connect to the notification channel
® extension - The extension to connect to the notification. Note that the priority will always be 1.
® app - The dialplan application to execute upon the answer of a notification

® appdata - The data to pass to the notification dialplan application

Module-dependent settings

Connection-related options are specific to each module. Currently, all modules take a url, user,
and secret for configuration and no other module-specific settings have been implemented. At

this time, no support for HTTP redirects has been implemented, so it is important to specify the
correct URL-paying attention to any trailing slashes that may be necessary.

Calendaring Dialplan Functions

Read functions

The simplest dialplan query is the CALENDAR_BUSY query. It takes a single option, the name of
the calendar defined, and returns "1" for busy (including tentatively busy) and "0" for not busy.

For more information about a calendar event, a combination of CALENDAR_QUERY and
CALENDAR_QUERY_RESULT is used. CALENDAR_QUERY takes the calendar name and
optionally a start and end time in "unix time" (seconds from unix epoch). It returns an id that can
be passed to CALENDAR_QUERY_RESULT along with a field name to return the data in that
field. If multiple events are returned in the query, the number of the event in the list can be
specified as well. The available fields to return are:

® summary - A short summary of the event

® description - The full description of the event

® organizer - Who organized the event

® |ocation - Where the event is located

¢ calendar - The name of the calendar from calendar.conf
® uid - The unique identifier associated with the event

® start - The start of the event in seconds since Unix epoch

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® end - The end of the event in seconds since Unix epoch
® busystate - The busy state O=Free, 1=Tentative, 2=Busy

® attendees - A comma separated list of attendees as stored in the event and may include prefixes such as "mailto:".

When an event notification is sent to the dial plan, the CALENDAR_EVENT function may be
used to return the information about the event that is causing the notification. The fields that can
be returned are the same as those from CALENDAR_QUERY_ RESULT.

Write functions

To write an event to a calendar, the CALENDAR_WRITE function is used. This function takes a
calendar name and also uses the same fields as CALENDAR_QUERY_RESULT. As a write
function, it takes a set of comma-separated values that are in the same order as the specified
fields. For example:

CALENDAR_WRI TE(nycal endar, sumrary, or gani zer, start, end, busystate) =
"My event","mailto:jdoe@xanple.cont, 228383580, 228383640, 1)

Calendaring Dialplan Examples

Office hours

A common business PBX scenario is would be executing dialplan logic based on when the
business is open and the phones staffed. If the business is closed for holidays, it is sometimes
desirable to play a message to the caller stating why the business is closed.

The standard way to do this in asterisk has been doing a series of GotolfTime statements or
time-based include statements. Either way can be tedious and requires someone with access to
edit asterisk config files.

With calendaring, the adminstrator only needs to set up a calendar that contains the various
holidays or even recurring events specifying the office hours. A custom greeting filename could
even be contained in the description field for playback. For example:

5555551212, 1, Answer

exten => 5555551212, n, Got ol f (${ CALENDAR _BUSY(of fi cehour s) } ?cl osed: attendant, s, 1)

exten => 5555551212, n(cl osed), Set (i d=${ CALENDAR_QUERY(of f i ce, ${ EPOCH}, ${ EPCCH}) })

exten => 5555551212, n, Set (soundfi | e=${ CALENDAR_QUERY_RESULT(${i d}, description)})

exten => 5555551212, n, Pl ayback($[${| SNULL(soundfile)} ? generic-closed :: ${soundfile}])
exten => 5555551212, n, Hangup

11>

Meeting reminders

One useful application of Asterisk Calendaring is the ability to execute dialplan logic based on an
event notification. Most calendaring technologies allow a user to set an alarm for an event. If
these alarms are set on a calendar that Asterisk is monitoring and the calendar is set up for
event notification via calendar.conf, then Asterisk will execute notify the specified channel at the
time of the alarm. If an overrided notification time is set with the autoreminder setting, then the
notification would happen at that time instead.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The following example demonstrates the set up for a simple event notification that plays back a
generic message followed by the time of the upcoming meeting. calendar.conf.

extensions.conf :

s, 1, Answer

exten => s, n, Pl ayback(you- have- a- nmeeti ng-at)

exten => s, n, SayUni xTi me(${ CALENDAR_EVENT(start)})
exten => s, n, Hangup

11>

Writing an event

Both CalDAV and Exchange calendar servers support creating new events. The following
example demonstrates writing a log of a call to a calendar.

6000, 1, Set (st art =${ EPOCH})

exten => 6000, n, Di al (SI P/joe)

exten => h, 1, Set (end=${ EPOCH})

exten => h, n, Set (CALENDAR WRI TE(cal endar _j oe, summary, start, end)=Cal | from
${CALLERI D(al I)}, ${start}, ${end})

11>
Asterisk Channel Drivers
All about Asterisk and its Channel Drivers

Inter-Asterisk eXchange protocol, version 2 (IAX2)

Why IAX2?

The first question most people are thinking at this point is "Why do you need another VolP
protocol? Why didn't you just use SIP or H.323?"

Well, the answer is a fairly complicated one, but in a nutshell it's like this... Asterisk is intended as
a very flexible and powerful communications tool. As such, the primary feature we need from a
VoIP protocol is the ability to meet our own goals with Asterisk, and one with enough flexibility
that we could use it as a kind of laboratory for inventing and implementing new concepts in the
field. Neither H.323 or SIP fit the roles we needed, so we developed our own protocol, which,
while not standards based, provides a number of advantages over both SIP and H.323, some of
which are:

® Interoperability with NAT/PAT/Masquerade firewalls

® |AX seamlessly interoperates through all sorts of NAT and PAT and other firewalls, including the ability to place and receive calls, and
transfer calls to other stations.

® High performance, low overhead protocol

When running on low-bandwidth connections, or when running large numbers of calls, optimized bandwidth utilization is imperative. IAX

uses only 4 bytes of overhead

Internationalization support

IAX transmits language information, so that remote PBX content can be delivered in the native language of the calling party.

Remote dialplan polling

IAX allows a PBX or IP phone to poll the availability of a number from a remote server. This allows PBX dialplans to be centralized.

Flexible authentication

IAX supports cleartext, md5, and RSA authentication, providing flexible security models for outgoing calls and registration services.

Multimedia protocol

IAX supports the transmission of voice, video, images, text, HTML, DTMF, and URL's. Voice menus can be presented in both audibly and

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

visually.

Call statistic gathering

IAX gathers statistics about network performance (including latency and jitter, as well as providing end-to-end latency measurement.
Call parameter communication

Caller*ID, requested extension, requested context, etc are all communicated through the call.

Single socket design

IAX's single socket design allows up to 32768 calls to be multiplexed.

While we value the importance of standards based (i.e. SIP) call handling, hopefully this will
provide a reasonable explanation of why we developed IAX rather than starting with SIP.

Introduction to IAX2

This section is intended as an introduction to the Inter-Asterisk eXchange v2 (or simply 1AX2)
protocol. It provides both a theoretical background and practical information on its use.

IAX2 Configuration

For examples of a configuration, please see the iax.conf.sample in the /configs directory of your
source code distribution.

IAX2 Jitterbuffer
The new jitterbuffer

You must add "jitterbuffer=yes" to either the [general] part of iax.conf, or to a peer or a user. (just
like the old jitterbuffer). Also, you can set "maxjitterbuffer=n", which puts a hard-limit on the size
of the jitterbuffer of "n milliseconds". It is not necessary to have the new jitterbuffer on both sides
of a call; it works on the receive side only.

PLC

The new jitterbuffer detects packet loss. PLC is done to try to recreate these lost packets in the
codec decoding stage, as the encoded audio is translated to slinear. PLC is also used to mask
jitterbuffer growth.

This facility is enabled by default in iLBC and speex, as it has no additional cost. This facility can
be enabled in adpcm, alaw, g726, gsm, Ipc10, and ulaw by setting genericplc = true in the [plc]
section of codecs.conf.

Trunktimestamps

To use this, both sides must be using Asterisk v1.2 or later. Setting "trunktimestamps=yes" in
iax.conf will cause your box to send 16-bit timestamps for each trunked frame inside of a trunk
frame. This will enable you to use jitterbuffer for an IAX2 trunk, something that was not possible
in the old architecture.

The other side must also support this functionality, or else, well, bad things will happen. If you
don't use trunktimestamps, there's lots of ways the jitterbuffer can get confused because
timestamps aren't necessarily sent through the trunk correctly.

Communication with Asterisk v1.0.x systems

You can set up communication with v1.0.x systems with the new jitterbuffer, but you can't use

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

trunks with trunktimestamps in this communication.

If you are connecting to an Asterisk server with earlier versions of the software (1.0.x), do not
enable both jitterbuffer and trunking for the involved peers/users in order to be able to
communicate. Earlier systems will not support trunktimestamps.

You may also compile chan_iax2.c without the new jitterbuffer, enabling the old backwards
compatible architecture. Look in the source code for instructions.

Testing and monitoring

You can test the effectiveness of PLC and the new jitterbuffer's detection of loss by using the
new CLI command "iax2 test losspct n". This will simulate n percent packet loss coming in to
chan_iax2. You should find that with PLC and the new JB, 10 percent packet loss should lead to
just a tiny amount of distortion, while without PLC, it would lead to silent gaps in your audio.

"lax2 show netstats" shows you statistics for each iax2 call you have up. The columns are "RTT"
which is the round-trip time for the last PING, and then a bunch of s tats for both the local side
(what you're receiving), and the remote side (what the other end is telling us they are seeing).
The remote stats may not be complete if the remote end isn't using the new jitterbuffer.

The stats shown are:

Jit: The jitter we have measured (milliseconds)

Del: The maximum delay imposed by the jitterbuffer (milliseconds)

Lost: The number of packets we've detected as lost.

%: The percentage of packets we've detected as lost recently.

Drop: The number of packets we've purposely dropped (to lower latency).
OO0O0: The number of packets we've received out-of-order

Kpkts: The number of packets we've received / 1000.

Reporting problems
There's a couple of things that can make calls sound bad using the jitterbuffer:

The JB and PLC can make your calls sound better, but they can't fix everything. If you lost 10
frames in a row, it can't possibly fix that. It really can't help much more than one or two
consecutive frames.

® Bad timestamps: If whatever is generating timestamps to be sent to you generates nonsensical timestamps, it can confuse the jitterbuffer.
In particular, discontinuities in timestamps will really upset it: Things like timestamps sequences which go 0, 20, 40, 60, 80, 34000,
34020, 34040, 34060... It's going to think you've got about 34 seconds of jitter in this case, etc.. The right solution to this is to find out
what's causing the sender to send us such nonsense, and fix that. But we should also figure out how to make the receiver more robust in
cases like this.
chan_iax2 will actually help fix this a bit if it's more than 3 seconds or so, but at some point we should try to think of a better way to detect
this kind of thing and resynchronize.

® Different clock rates are handled very gracefully though; it will actually deal with a sender sending 20% faster or slower than you expect
just fine.

® Really strange network delays: If your network "pauses" for like 5 seconds, and then when it restarts, you are sent some packets that are
5 seconds old, we are going to see that as a lot of jitter. We already throw away up to the worst 20 frames like this, though, and the
"maxjitterbuffer" parameter should put a limit on what we do in this case.

mISDN

Introduction to mISDN

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This package contains the mISDN Channel Driver for the Asterisk PBX. It supports every mISDN
Hardware and provides an interface for Asterisk.

mISDN Features

NT and TE mode

PP and PMP mode

BRI and PRI (with BNE1 and BN2E1 Cards)
Hardware bridging

DTMF detection in HW+mISDNdsp

Display messages on phones (on those that support it)
app_SendText

HOLD/RETRIEVE/TRANSFER on ISDN phones :)
Allow/restrict user number presentation

Volume control

Crypting with mISDNdsp (Blowfish)

Data (HDLC) callthrough

Data calling (with app_ptyfork +pppd)

Echo cancellation

Call deflection

Some others

mISDN Fast Installation Guide
It is easy to install mMISDN and mISDNuser. This can be done by:

You can download latest stable releases from http://www.misdn.org/downloads/

Just fetch the newest head of the GIT (mISDN project moved from CVS) In details this process

described here: http://www.misdn.org/index.php/GIT
then compile and install both with:

cd mM SDN ; make && make install

(you will need at least your kernel headers to compile mISDN).

cd ml SDNuser ; make && make install

Now you can compile chan_misdn, just by making Asterisk:

cd asterisk ; ./configure &% nmake && make install

That's all!

Follow the instructions in the mISDN Package for how to load the Kernel Modules. Also install
process described in http://www.misdn.org/index.php/Installing_mISDN

mISDN Pre-Requisites
To compile and install this driver, you'll need at least one mISDN Driver and the mISDNuser

package. Chan_misdn works with both, the current release version and the development (svn
trunk) version of Asterisk.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.misdn.org/downloads/
http://www.misdn.org/index.php/GIT
http://www.misdn.org/index.php/Installing_mISDN

You should use Kernels = 2.6.9

mISDN Configuration

First of all you must configure the mISDN drivers, please follow the instructions in the mISDN
package to do that, the main config file and config script is:

fetc/init.d/ msdn-init and /etc/ msdn-init.conf

Now you will want to configure the misdn.conf file which resides in the Asterisk config directory
(normally /etc/asterisk).

misdn.conf: [general] subsection

The misdn.conf file contains a "general" subsection, and user subsections which contain misdn
port settings and different Asterisk contexts.

In the general subsection you can set options that are not directly port related. There is for
example the very important debug variable which you can set from the Asterisk cli (command line
interface) or in this configuration file, bigger numbers will lead to more debug output. There's also
a trace file option, which takes a path+filename where debug output is written to.

misdn.conf: [default] subsection

The default subsection is another special subsection which can contain all the options available
in the user/port subsections. The user/port subsections inherit their parameters from the default
subsection.

misdn.conf: user/port subsections

The user subsections have names which are unequal to "general”. Those subsections contain
the ports variable which mean the mISDN Ports. Here you can add multiple ports, comma
separated.

Especially for TE-Mode Ports there is a msns option. This option tells the chan_misdn driver to
listen for incoming calls with the given msns, you can insert a " as single msn, which leads to
getting every incoming call. If you want to share on PMP TE SO with Asterisk and a phone or
ISDN card you should insert here the msns which you assign to Asterisk. Finally a context
variable resides in the user subsections, which tells chan_misdn where to send incoming calls to
in the Asterisk dial plan (extension.conf).*

Dial and Options String

The dial string of chan_misdn got more complex, because we added more features, so the
generic dial string looks like:

[: bchannel]| g: <gr oup>/ <ext ensi on>[/ <OPTI ONSSTRI NG>]
11 ></ OPTI ONSSTRI NG></ ext ensi on></ gr oup>

The Optionsstring looks Like:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[E—

<opt ar g>: <opt char ><opt arg>. . .
]11></ opt ar g></ opt char ></ opt ar g>

The ":" character is the delimiter. The available options are:

a - Have Asterisk detect DTMF tones on called channel

¢ - Make crypted outgoing call, optarg is keyindex

d - Send display text to called phone, text is the optarg

e - Perform echo cancelation on this channel, takes taps as optarg (32,64,128,256)

e! - Disable echo cancelation on this channel

f - Enable fax detection

h - Make digital outgoing call

h1 - Make HDLC mode digital outgoing call

i - Ignore detected DTMF tones, don't signal them to Asterisk, they will be transported inband.
jb - Set jitter buffer length, optarg is length

jt - Set jitter buffer upper threshold, optarg is threshold

jn - Disable jitter buffer

n - Disable mISDN DSP on channel. Disables: echo cancel, DTMF detection, and volume control.
p - Caller ID presentation, optarg is either 'allowed' or 'restricted’

s - Send Non-inband DTMF as inband

vr - Rx gain control, optarg is gain

vt - Tx gain control, optarg is gain

chan_misdn registers a new dial plan application "misdn_set_opt" when loaded. This application
takes the Optionsstring as argument. The Syntax is:

—

When you set options in the dialstring, the options are set in the external channel. When you set
options with misdn_set_opt, they are set in the current incoming channel. So if you like to use
static encryption, the scenario looks as follows:

Phonel --> * Box 1 --> PSTN_TE PSTN_TE --> * Box 2 --> Phone2

The encryption must be done on the PSTN sides, so the dialplan on the boxes are:

J—

J—

mISD

At th

${CRYPT_MBN}, 1, ni sdn_set _opt (:¢1)
exten => ${CRYPT_MSN}, 2, di al (${ PHONE2})

N CLI Commands

e Asterisk cli you can try to type in:

m sdn <tab> <tab>

Now

Content is

you should see the misdn cli commands:

licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

clean -> pid (cleans a broken call, use with care, leads often to a segmentation fault)
send -> display (sends a Text Message to a Asterisk channel, this channel must be an misdn channel)
set -> debug (sets debug level)
show ->
® config (shows the configuration options)
channels (shows the current active misdn channels)
channel (shows details about the given misdn channels)
stacks (shows the current ports, their protocols and states)
fullstacks (shows the current active and inactive misdn channels)
® restart -> port (restarts given port (L2 Restart)) - reload (reloads misdn.conf)

You can only use "misdn send display" when an Asterisk channel is created and isdn is in the
correct state. "correct state" means that you have established a call to another phone (must not
be isdn though).

Then you use it like this:

m sdn send display m SDN 1/ 101 "Hello World!"
where 1 is the Port of the Card where the phone is plugged in, and 101 is the msn (callerid) of
the Phone to send the text to.
mISDN Variables
mISDN Exports/Imports a few Variables:
®* MISDN_ADDRESS_COMPLETE : Is either set to 1 from the Provider, or you can set it to 1 to force a sending complete.*

mISDN Debugging and Bug Reports

If you encounter problems, you should set up the debugging flag, usually debug=2 should be
enough. The messages are divided into Asterisk and mISDN parts. mISDN Debug messages
begin with an 'I', Asterisk messages begin with an ", the rest is clear | think.*

Please take a trace of the problem and open a report in the Asterisk issue tracker at
https://issues.asterisk.org in the "channel drivers" project, "chan_misdn" category. Read the bug
guidelines to make sure you provide all the information needed.

mISDN Examples

Here are some examples of how to use chan_misdn in the dialplan (extensions.conf):

_X., 1, Dial (m SDN ${ OQUT_PORT}/ ${ EXTEN})

exten => _0X., 1, D al (m SDN g: ${ OUT_GROUP} / ${ EXTEN: 1})

exten => _1X., 1, Dial (m SDN g: ${ OQUT_CGROUP} / ${ EXTEN: 1}/ : dHel | 0)

exten => _1X.,1,Di al (m SDN g: ${ OUT_CGROUP} / ${ EXTEN: 1}/ : dHel | 0 Test: n)
11>

On the last line, you will notice the last argument (Hello); this is sent as Display Message to the
Phone.

mISDN Known Problems

® Q: | cannot hear any tone after a successful CONNECT to the other end.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://issues.asterisk.org

® A: You forgot to load mISDNdsp, which is now needed by chan_misdn for switching and DTMF tone detection.

Local Channel

Introduction to Local Channels

In Asterisk, Local channels are a method used to treat an extension in the dialplan as if it were
an external device. In essense, Asterisk will send the call back into the dialplan as the destination
of the call, versus sending the call to a device.

Two of the most common areas where Local channels are used include members configured for
gueues, and in use with callfiles. There are also other uses where you want to ring two
destinations, but with different information, such as different callerID for each outgoing request.

Local Channel Examples

Local channels are best demonstrated through the use of an example. Our first example isn't
terribly useful, but will demonstrate how Local channels can execute dialplan logic by dialing from
the Dial() application.

Trivial Local Channel Example

In our dialplan (extensions.conf), we can Dial() another part of the dialplan through the use Local
channels. To do this, we can use the following dialplan:

201, 1, Verbose(2, Dial another part of the dialplan via the Local chan)
exten => 201, n, Ver bose(2, Qut si de channel : ${ CHANNEL})

exten => 201, n, Di al (Local / 201@xt ensi ons)

exten => 201, n, Hangup()

[ext ensi ons]

exten => 201, 1, Verbose(2, Made it to the Local channel)
exten => 201, n, Ver bose(2, | nsi de channel : ${ CHANNEL})
exten => 201, n, Di al (S| P/ some- naned- ext ensi on, 30)

exten => 201, n, Hangup()

11>

The output of the dialplan would look something like the following. The output has been broken
up with some commentary to explain what we're looking at.

— Executing [201@levi ces: 1] Verbose("SI P/ ny_desk _phone-00000014",
"2,Dial another part of the dialplan via the

Local chan") in new stack
== Dial another part of the dialplan via the Local chan

We dial extension 201 from SIP/my_desk_phone which has entered the [devices] context. The
first line simply outputs some information via the Verbose() application.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

— Executing [201@levi ces: 2] Verbose("SI P/ nmy_desk_phone-00000014",

"2, Qut si de channel: SI P/ nmy_desk phone-00000014") in
new st ack
== Qutside channel: SIP/my_desk_phone-00000014

The next line is another Verbose() application statement that tells us our current channel name.
We can see that the channel executing the current dialplan is a desk phone (aptly named
'my_desk_phone').

— Executing [201@levices: 3] Dial ("SIP/ ny_desk_phone-00000014",
"Local / 201@xt ensi ons") in new stack
— Cal | ed 201@xt ensi ons

Now the third step in our dialplan executes the Dial() application which calls extension 201 in the
[extensions] context of our dialplan. There is no requirement that we use the same extension
number - we could have just as easily used a named extension, or some other number.
Remember that we're dialing another channel, but instead of dialing a device, we're "dialing"
another part of the dialplan.

— Executing [201@xt ensions: 1]
Ver bose(" Local / 201@xt ensi ons-7cf4; 2", "2,Made it to the Local
channel ") in new stack == Made it to the Local channel

Now we've verified we've dialed another part of the dialplan. We can see the channel executing
the dialplan has changed to Local/201@extensions-7cf4;2. The part '-7cf4;2" is just the unique
identifier, and will be different for you.

— Executing [201@xtensions: 2]

Ver bose(" Local / 201@xt ensi ons-7cf4; 2", "2,Inside channel:
Local / 201 @xt ensi ons-7cf4;2") in new stack

== | nsi de channel: Local /201@xtensi ons-7cf4; 2

Here we use the Verbose() application to see what our current channel name is. As you can see
the current channel is a Local channel which we created from our SIP channel.

— Executing [201@xtensions:3] Dial("Local/201@xtensions-7cf4;2",
" Sl P/ some- nanmed- ext ensi on, 30") i n new stack

And from here, we're using another Dial() application to call a SIP device configured in sip.conf
as [some-named-extension].

Now that we understand a simple example of calling the Local channel, let's expand upon this

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

example by using Local channels to call two devices at the same time, but delay calling one of
the devices.

Delay Dialing Devices Example

Lets say when someone calls extension 201, we want to ring both the desk phone and their
cellphone at the same time, but we want to wait about 6 seconds to start dialing the cellphone.
This is useful in a situation when someone might be sitting at their desk, but don't want both
devices ringing at the same time, but also doesn't want to wait for the full ring cycle to execute on
their desk phone before rolling over to their cellphone.

The dialplan for this would look something like the following:

201, 1, Ver bose(2, Cal | desk phone and cel | phone but with del ay)

exten => 201, n, Di al (Local / deskphone- 201@xt ensi ons&Local / cel | phone- 201@xt ensi ons, 30)
exten => 201, n, Voi cenui | (201@lef aul t, ${1 F($[${ DI ALSTATUS} = BUSY] ?b: u)})

exten => 201, n, Hangup()

[ext ensi ons]

; Dial the desk phone

exten => deskphone-201, 1, Verbose(2, Di al i ng desk phone of extension 201)

exten => deskphone- 201, n, Di al (SI P/ 0004f 2040001) ; SIP device with MAC address
; of 0004f 2040001

; Dial the cell phone

exten => cel |l phone-201,

exten => cel | phone-201,

exten => cel |l phone-201,

exten => cel | phone-201,

11>

, Verbose(2, Di al i ng cel | phone of extension 201)
, Verbose(2,-- Waiting 6 seconds before dialing)
, Vit (6)

, Di al (DAHDI / g0/ 14165551212)

> 3 5 B

When someone dials extension 201 in the [devices] context, it will execute the Dial() application,
and call two Local channels at the same time:

Local / deskphone- 201@xt ensi ons
Local / cel | phone- 201 @xt ensi ons

It will then ring both of those extensions for 30 seconds before rolling over to the Voicemail()
application and playing the appropriate voicemail recording depending on whether the
${DIALSTATUS} variable returned BUSY or not.

When reaching the deskphone-201 extension, we execute the Dial() application which calls the
SIP device configured as '0004f204001' (the MAC address of the device). When reaching the
cellphone-201 extension, we dial the cellphone via the DAHDI channel using group zero (g0) and
dialing phone number 1-416-555-1212.

Dialing Destinations with Different Information

With Asterisk, we can place a call to multiple destinations by separating the
technology/destination pair with an ampersand (&). For example, the following Dial() line would
ring two separate destinations for 30 seconds:

201, 1, Di al (Sl P/ 0004f 2040001&DAHDI / g0/ 14165551212, 30)
11>

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

That line would dial both the SIP/0004f2040001 device (likely a SIP device on the network) and
dial the phone number 1-416-555-1212 via a DAHDI interface. In our example though, we would
be sending the same callerID information to both end points, but perhaps we want to send a
different callerID to one of the destinations?

We can send different callerIDs to each of the destinations if we want by using the Local channel.
The following example shows how this is possible because we would Dial() two different Local
channels from our top level Dial(), and that would then execute some dialplan before sending the
call off to the final destinations.

201, 1, NoOp()

exten => 201, n, Di al (Local / 201@ nt er nal & ocal / 201@xt er nal , 30)

exten => 201, n, Voi cemai | (201@lef aul t, ${| F($[${ DI ALSTATUS} = BUSY] ?b: u)})
exten => 201, n, Hangup()

[internal]

exten => 201, 1, Verbose(2, Placing internal call for extension 201)
exten => 201, n, Set (CALLERI D(nane) =Fr om Sal es)

exten => 201, n, Di al (SI P/ 0004f 2040001, 30)

[external]

exten => 201, 1, Verbose(2, Pl aci ng external call for extension 201)
exten => 201, n, Set (CALLERI D(nane) =Acne C eani ng)

exten => 201, n, Di al (DAHDI / g0/ 14165551212)

11>

With the dialplan above, we've sent two different callerIDs to the destinations:

® "From Sales" was sent to the local device SIP/0004f2040001
® "Acme Cleaning" was sent to the remote number 1-416-555-1212 via DAHDI

Because each of the channels is independent from the other, you could perform any other call
manipulation you need. Perhaps the 1-416-555-1212 number is a cell phone and you know you
can only ring that device for 18 seconds before the voicemail would pick up. You could then limit
the length of time the external number is dialed, but still allow the internal device to be dialed for
a longer period of time.

Using Callfiles and Local Channels

Another example is to use callfiles and Local channels so that you can execute some dialplan
prior to performing a Dial(). We'll construct a callfile which will then utilize a Local channel to
lookup a bit of information in the AstDB and then place a call via the channel configured in the
AstDB.

First, lets construct our callfile that will use the Local channel to do some lookups prior to placing
our call. More information on constructing callfiles is located in the doc/callfiles.txt file of your
Asterisk source.

Our callfile will simply look like the following:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Channel : Local / 201@levi ces
Application: Playback
Dat a: sil ence/ 1&t-weasel s

Add the callfile information to a file such as 'callfile.new' or some other appropriately named file.

Our dialplan will perform a lookup in the AstDB to determine which device to call, and will then
call the device, and upon answer, Playback() the silence/l1 (1 second of silence) and the
tt-weasels sound files.

Before looking at our dialplan, lets put some data into AstDB that we can then lookup from the
dialplan. From the Asterisk CLI, run the following command:

*CLI > dat abase put phones 201/ devi ce SI P/ 0004f 2040001

We've now put the device destination (SIP/0004f2040001) into the 201/device key within the
phones family. This will allow us to lookup the device location for extension 201 from the
database.

We can then verify our entry in the database using the 'database show' CLI command:

*CLI > dat abase show / phones/ 201/ devi ce : S| P/ 0004f 2040001

Now lets create the dialplan that will allow us to call SIP/0004f2040001 when we request
extension 201 from the [extensions] context via our Local channel.

201, 1, NoOp()

exten => 201, n, Set (DEVI CE=${ DB(phones/ ${ EXTEN}/ devi ce) })

exten => 201, n, Got ol f ($[${1 SNULL(${ DEVI CE}) }] ?hangup) ; if nothing returned,
; then hangup

exten => 201, n, Di al (${ DEVI CE}, 30)

exten => 201, n(hangup(), Hangup()

11>

Then, we can perform a call to our device using the callfile by moving it into the
Ivar/spool/asterisk/outgoing/ directory.

nmv callfile.new /var/spool/asterisks/outgoing*

Then after a moment, you should see output on your console similar to the following, and your
device ringing. Information about what is going on during the output has also been added
throughout.

— Attenpting call on Local/201@levices for application
Pl ayback(sil ence/ 1& t-weasels) (Retry 1)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

You'll see the line above as soon as Asterisk gets the request from the callfile.

— Executing [201@evi ces: 1] NoOp("Local / 201@levi ces-ecf0; 2", "") in
new st ack

— Executing [201@levi ces: 2] Set("Local/201l@evices-ecf0; 2",

" DEVI CE=SI P/ 0004f 2040001") in new stack

This is where we performed our lookup in the AstDB. The value of SIP/0004f2040001 was then
returned and saved to the DEVICE channel variable.

— Executing [201@levices: 3] CGotolf("Local/201@levices-ecfO; 2",
"0?hangup”) in new stack

We perform a check to make sure ${DEVICE} isn't NULL. If it is, we'll just hangup here.

— Executing [201@levi ces: 4] Dial ("Local/201@evi ces-ecfO; 2",
"SI P/ 0004f 2040001, 30") in new stack

— Cal |l ed 000f 2040001

— SI P/ 0004f 2040001- 00000022 is ringing

Now we call our device SIP/0004f2040001 from the Local channel.

S| P/ 0004f 2040001- 00000022 answer ed Local / 201@levi ces-ecf 0; 2*

We answer the call.

> Channel Local/201@levi ces-ecf0;1 was answer ed.
> Launchi ng Pl ayback(silence/ 1&t-weasel s) on
Local / 201 @levi ces-ecf0; 1

We then start playing back the files.

— <Local / 201@levi ces-ecf0; 1> Playing 'silence/1l.slin" (language
‘en')

== Spawn extension (devices, 201, 4) exited non-zero on

"Local / 201@levi ces- ecf0; 2

At this point we now see the Local channel has been optimized out of the call path. This is
important as we'll see in examples later. By default, the Local channel will try to optimize itself
out of the call path as soon as it can. Now that the call has been established and audio is flowing,
it gets out of the way.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

— <SI P/ 0004f 2040001- 00000022> Pl ayi ng 'tt-weasel s.ul aw (Il anguage
‘en')

[Mar 1 13:35:23] NOTICE[16814]: pbx_spool.c:349 attenpt _thread: Call
conpl eted to Local/201@levi ces

We can now see the tt-weasels file is played directly to the destination (instead of through the
Local channel which was optimized out of the call path) and then a NOTICE stating the call was
completed.

Understanding when to use (slash)n

Lets take a look at an example that demonstrates when the use of the /n directive is necessary. If
we spawn a Local channel which does a Dial() to a SIP channel, but we use the L() option (which
is used to limit the amount of time a call can be active, along with warning tones when the time is
nearly up), it will be associated with the Local channel, which is then optimized out of the call
path, and thus won't perform as expected.

This following dialplan will not perform as expected.

2,1, D al (SI P/ PHONE_B, , L(60000: 45000: 15000))

[internal]
exten => 4,1, D al (Local / 2@ervi ces)

11>

By default, the Local channel will try to optimize itself out of the call path. This means that once
the Local channel has established the call between the destination and Asterisk, the Local
channel will get out of the way and let Asterisk and the end point talk directly, instead of flowing
through the Local channel.

This can have some adverse effects when you're expecting information to be available during the
call that gets associated with the Local channel. When the Local channel is optimized out of the
call path, any Dial() flags, or channel variables associated with the Local channel are also
destroyed and are no longer available to Asterisk.

We can force the Local channel to remain in the call path by utilizing the /n directive. By adding
/n to the end of the channel definition, we can keep the Local channel in the call path, along with
any channel variables, or other channel specific information.

In order to make this behave as we expect (limiting the call), we would change:

4,1, Dial (Local / 2@er vi ces)
11>

...Into the following:

4,1, Dial (Local / 2@ervi ces/ n)
11>

By adding /n to the end, our Local channel will now stay in the call path and not go away.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Why does adding the /n option all of a suddon make the 'L’ option work? First we need to show
an overview of the call flow that doesn't work properly, and discuss the information associated
with the channels:

. SIP device PHONE_A calls Asterisk via a SIP INVITE

. Asterisk accepts the INVITE and then starts processing dialplan logic in the [internal] context

. Our dialplan calls Dial(Local/2@services) - notice no /n

. The Local channel then executes dialplan at extension 2 within the [services] context

. Extension 2 within [services] then performs Dial() to PHONE_B with the line: Dial(SIP/PHONE_B,,L(60000:45000:15000))

. SIP/PHONE_B then answers the call

. Even though the L option was given when dialing the SIP device, the L information is stored in the channel that is doing the Dial() which
is the Local channel, and not the endpoint SIP channel.

. The Local channel in the middle, containing the information for tracking the time allowance of the call, is then optimized out of the call
path, losing all information about when to terminate the call.

9. SIP/PHONE_A and SIP/PHONE_B then continue talking indefinitely.

~N~No b wNE

[ee]

Now, if we were to add /n to our dialplan at step three (3) then we would force the Local channel
to stay in the call path, and the L() option associated with the Dial() from the Local channel would
remain, and our warning sounds and timing would work as expected.

There are two workarounds for the above described scenario:

1. Use what we just described, Dial(Local/2@services/n) to cause the Local channel to remain in the call path so that the L() option used
inside the Local channel is not discarded when optimization is performed.

2. Place the L() option at the outermost part of the path so that when the middle is optimized out of the call path, the information required to
make L() work is associated with the outside channel. The L information will then be stored on the calling channel, which is PHONE_A.
For example:

2,1, Dial (S| P/ PHONE_B)

[internal]
exten => 4,1, Dial (Local / 2@ervi ces,, L(60000: 45000: 15000)) ;

11>

Local Channel Modifiers

There are additional modifiers for the Local channel as well. They include:

® 'n'- Adding "/n" at the end of the string will make the Local channel not do a native transfer (the "n" stands for "n"o release) upon the
remote end answering the line. This is an esoteric, but important feature if you expect the Local channel to handle calls exactly like a
normal channel. If you do not have the "no release" feature set, then as soon as the destination (inside of the Local channel) answers the
line and one audio frame passes, the variables and dial plan will revert back to that of the original call, and the Local channel will become
a zombie and be removed from the active channels list. This is desirable in some circumstances, but can result in unexpected dialplan
behavior if you are doing fancy things with variables in your call handling.

® '~ Adding "/j" at the end of the string allows you to use the generic jitterbuffer on incoming calls going to Asterisk applications. For
example, this would allow you to use a jitterbuffer for an incoming SIP call to Voicemail by putting a Local channel in the middle. The '
option must be used in conjunction with the 'n' option to make sure that the Local channel does not get optimized out of the call.
This option is available starting in the Asterisk 1.6.0 branch.

® 'm'- Using the "/m" option will cause the Local channel to forward music on hold (MoH) start and stop requests. Normally the Local
channel acts on them and it is started or stopped on the Local channel itself. This options allows those requests to be forwarded through
the Local channel.
This option is available starting in the Asterisk 1.4 branch.

® 'b'- The "/b" option causes the Local channel to return the actual channel that is behind it when queried. This is useful for transfer
scenarios as the actual channel will be transferred, not the Local channel.

This option is available starting in the Asterisk 1.6.0 branch.

Mobile Channel

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

chan_mobile pages

Introduction to the Mobile Channel

Asterisk Channel Driver to allow Bluetooth Cell/Mobile Phones to be used as FXO devices, and
Headsets as FXS devices.

Mobile Channel Features

Multiple Bluetooth Adapters supported.

Multiple phones can be connected.

Multiple headsets can be connected.

Asterisk automatically connects to each configured mobile phone / headset when it comes in range.
CLI command to discover bluetooth devices.

Inbound calls on the mobile network to the mobile phones are handled by Asterisk, just like inbound calls on a Zap channel.
CLI passed through on inbound calls.

Dial outbound on a mobile phone using Dial(Mobile/device/nnnnnnn) in the dialplan.

Dial a headset using Dial(Mobile/device) in the dialplan.

Application MobileStatus can be used in the dialplan to see if a mobile phone / headset is connected.
Supports devicestate for dialplan hinting.

Supports Inbound and Outbound SMS.

Supports ‘channel' groups for implementing '‘GSM Gateways'

Mobile Channel Requirements

In order to use chan_mobile, you must have a working bluetooth subsystem on your Asterisk
box. This means one or more working bluetooth adapters, and the BlueZ packages.

Any bluetooth adapter supported by the Linux kernel will do, including usb bluetooth dongles.

The BlueZ package you need is bluez-utils. If you are using a GUI then you might want to install
bluez-pin also. You also need libbluetooth, and libbluetooth-dev if you are compiling Asterisk
from source.

You need to get bluetooth working with your phone before attempting to use chan_mobile. This
means 'pairing’ your phone or headset with your Asterisk box. | dont describe how to do this here
as the process differs from distro to distro. You only need to pair once per adapter.

See http://www.bluez.org for details about setting up Bluetooth under Linux.
Mobile Channel Concepts

chan_mobile deals with both bluetooth adapters and bluetooth devices. This means you need to
tell chan_mobile about the bluetooth adapters installed in your server as well as the devices
(phones / headsets) you wish to use.

chan_maobile currently only allows one device (phone or headset) to be connected to an adapter
at a time. This means you need one adapter for each device you wish to use simultaneously.
Much effort has gone into trying to make multiple devices per adapter work, but in short it doesnt.

Periodically chan_mobile looks at each configured adapter, and if it is not in use (i.e. no device
connected) will initiate a search for devices configured to use this adapater that may be in range.
If it finds one it will connect the device and it will be available for Asterisk to use. When the
device goes out of range, chan_mobile will disconnect the device and the adapter will become
available for other devices.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.bluez.org

Configuring chan_mobile

The configuration file for chan_mobile is /etc/asterisk/mobile.conf. It is a normal Asterisk config
file consisting of sections and key=value pairs.

See configs/mobile.conf.sample for an example and an explanation of the configuration.

Using chan_mobile

chan_mobile.so must be loaded either by loading it using the Asterisk CLI, or by adding it to
/etc/asterisk/modules.conf

Search for your bluetooth devices using the CLI command 'mobile search'. Be patient with this
command as it will take 8 - 10 seconds to do the discovery. This requires a free adapter.
Headsets will generally have to be put into ‘pairing' mode before they will show up here.

This will return something like the following :-

*CLI > nobi | e search

Address Name Usabl e Type Port

00: 12:56: 90: 6E: 00 LG TUS00 Yes Phone 4

00: 80: C8: 35: 52: 78 Toaster No Headset O
00:0B: 9E: 11: 74: A5 Hello Il Plus Yes Headset 1
00: OF: 86: OE: AE: 42 Daves Bl ackberry Yes Phone 7

This is a list of all bluetooth devices seen and whether or not they are usable with chan_mobile.
The Address field contains the 'bd address' of the device. This is like an ethernet mac address.
The Name field is whatever is configured into the device as its name. The Usable field tells you
whether or not the device supports the Bluetooth Handsfree Profile or Headset profile. The Type
field tells you whether the device is usable as a Phone line (FXO) or a headset (FXS) The Port
field is the number to put in the configuration file.

Choose which device(s) you want to use and edit /etc/asterisk/mobile.conf. There is a sample
included with the Asterisk-addons source under configs/mobile.conf.sample.

Be sure to configure the right bd address and port number from the search. If you want inbound
calls on a device to go to a specific context, add a context= line, otherwise the default will be
used. The 'id' of the device [bitinbrackets] can be anything you like, just make it unique.

If you are configuring a Headset be sure to include the type=headset line, if left out it defaults to
phone.

The CLI command 'mobile show devices' can be used at any time to show the status of

configured devices, and whether or not the device is capable of sending / receiving SMS via
bluetooth.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

*CLI > nobi |l e show devi ces

I D Address Group Adapter Connected State SMS
headset 00:0B: 9E: 11: AE: C6 O blue No Init No
LGTU550 00: EO: 91: 7F: 46:44 1 dlink No Init No

As each phone is connected you will see a message on the Asterisk console :-

Loaded chan_nobile.so => (Bl uetooth Mbile Device Channel Driver)
— Bl uetooth Device bl ackberry has connect ed.
— Bl uetooth Device dave has connect ed.

To make outbound calls, add something to you Dialplan like the following :- (modify to suit)

_9X., 1, D al (Mbil e/ LGTU550/ ${ EXTEN: 1}, 45)
exten => _9X , n, Hangup
11>

To use channel groups, add an entry to each phones definition in mobile.conf like group=n where
nis a number.

Then if you do something like Dial(Mobile/g1/123456) Asterisk will dial 123456 on the first
connected free phone in group 1.

Phones which do not have a specific 'group=n’ will be in group 0.

To dial out on a headset, you need to use some other mechanism, because the headset is not
likely to have all the needed buttons on it. res_clioriginate is good for this :-

*CLI > originate Mbil e/ headset extensi on NNNNN@ont ext

This will call your headset, once you answer, Asterisk will call NNNNN at context context

Mobile Channel Dialplan Hints

chan_mobile supports 'device status' so you can do somthing like

1234, hi nt, SI P/ 30&\bbi | e/ dave&\obi | e/ bl ackberry
11>

MobileStatus Application

chan_mobile also registers an application named MobileStatus. You can use this in your Dialplan
to determine the 'state’ of a device.

For example, suppose you wanted to call dave's extension, but only if he was in the office. You
could test to see if his mobile phone was attached to Asterisk, if it is dial his extension, otherwise
dial his mobile phone.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

40, 1, Mobi | eSt at us(dave, DAVECELL)

exten => 40, 2, Gotol f ($["${DAVECELL}" = "1"] ?3:5)
exten => 40, 3, Di al (ZAP/ g1/ 0427466412, 45,tT)
exten => 40, 4, Hangup

exten => 40,5, D al (SI P/ 40,45,tT)

exten => 40, 6, Hangup

11>

MobileStatus sets the value of the given variable to :-

® 1 = Disconnected. i.e. Device not in range of Asterisk, or turned off etc etc
® 2 =Connected and Not on a call. i.e. Free
® 3 =Connected and on a call. i.e. Busy

Mobile Channel DTMF Debouncing

DTMF detection varies from phone to phone. There is a configuration variable that allows you to
tune this to your needs. e.g. in mobile.conf

change dtmfskip to suit your phone. The default is 200. The larger the number, the more chance
of missed DTMF. The smaller the number the more chance of multiple digits being detected.

Mobile Channel SMS Sending and Receiving

If Asterisk has detected your mobile phone is capable of SMS via bluetooth, you will be able to
send and receive SMS.

Incoming SMS's cause Asterisk to create an inbound call to the context you defined in
mobile.conf or the default context if you did not define one. The call will start at extension 'sms'.
Two channel variables will be available, SMSSRC = the number of the originator of the SMS and
SMSTXT which is the text of the SMS. This is not a voice call, so grab the values of the variables
and hang the call up.

So, to handle incoming SMS's, do something like the following in your dialplan

sns, 1, Ver bose(| ncom ng SMS from ${ SMSSRC} ${ SMSTXT})
exten => sns, n, Hangup()

11>
The above will just print the message on the console.

If you use res_jabber, you could do something like this :-

sns, 1, Jabber Send(transport, user @ abber. sonewher e. com SM5 from ${ SMSRC} ${ SMSTXT})
exten => sns, 2, Hangup()

11>
To send an SMS, use the application MobileSendSMS like the following :-

99, 1, Mobi | eSendSMS(dave, 0427123456, Hel | o Wr | d)
11>

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This will send 'Hello World' via device 'dave' to '0427123456'

Mobile Channel Debugging

Different phone manufacturers have different interpretations of the Bluetooth Handsfree Profile
Spec. This means that not all phones work the same way, particularly in the connection setup /
initialisation sequence. I've tried to make chan_mobile as general as possible, but it may need
modification to support some phone i've never tested.

Some phones, most notably Sony Ericsson 'T' series, dont quite conform to the Bluetooth HFP
spec. chan_mobile will detect these and adapt accordingly. The T-610 and T-630 have been
tested and work fine.

If your phone doesnt behave has expected, turn on Asterisk debugging with ‘core set debug 1'.
This will log a bunch of debug messages indicating what the phone is doing, importantly the
rfcomm conversation between Asterisk and the phone. This can be used to sort out what your
phone is doing and make chan_mobile support it.

Be aware also, that just about all mobile phones behave differently. For example my LG TU500
wont dial unless the phone is a the 'idle' screen. i.e. if the phone is showing a 'menu’ on the
display, when you dial via Asterisk, the call will not work. chan_mobile handles this, but there
may be other phones that do other things too...

Important: Watch what your mobile phone is doing the first few times. Asterisk wont make

random calls but if chan_mobile fails to hangup for some reason and you get a huge bill from
your telco, dont blame me

Asterisk Configuration
The top-level page for all things related to Asterisk configuration
General Configuration Information

The top-level page for general (typical) Asterisk configuration information.

Configuration Parser

Introduction

The Asterisk configuration parser in the 1.2 version and beyond series has been improved in a
number of ways. In addition to the realtime architecture, we now have the ability to create
templates in configuration files, and use these as templates when we configure phones,
voicemail accounts and queues.

These changes are general to the configuration parser, and works in all configuration files.
General syntax

Asterisk configuration files are defined as follows:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

In some files, (e.g. mgcp.conf, dahdi.conf and agents.conf), the syntax is a bit different. In these
files the syntax is as follows:

nane
| abel 3 val ue3
| abel 2 val ue4d
obj ect2 => name2

11>

In this syntax, we create objects with the settings defined above the object creation. Note that
settings are inherited from the top, so in the example above object2 has inherited the setting for
"labell” from the first object.

For template configurations, the syntax for defining a section is changed to:

The options field is used to define templates, refer to templates and hide templates. Any object
can be used as a template.
No whitespace is allowed between the closing "]" and the parenthesis "(".

Comments
All lines that starts with semi-colon ";" is treated as comments and is not parsed.

The "™ 5 —Ever 3 Ao - 3
commentuntiHthe-enrgmarker—;" is found. Parsing begins directly after the end-marker.

1000, 1, di al (SI P/1i sa)
11>

Including other files

In all of the configuration files, you may include the content of another file with the #include
statement. The content of the other file will be included at the row that the #include statement
occurred.

You may also include the output of a program with the #exec directive, if you enable it in
asterisk.conf

In asterisk.conf, add the execincludes = yes statement in the options section:

The exec directive is used like this:

Adding to an existing section

In this case, the plus sign indicates that the second section (with the same name) is an addition

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

to the first section. The second section can be in another file (by using the #include statement). If
the section name referred to before the plus is missing, the configuration will fail to load.

Defining a template-only section

The exclamation mark indicates to the config parser that this is a only a template and should not
itself be used by the Asterisk module for configuration. The section can be inherited by other
sections (see section "Using templates" below) but is not used by itself.

Using templates (or other configuration sections)

The name within the parenthesis refers to other sections, either templates or standard sections.
The referred sections are included before the configuration engine parses the local settings
within the section as though their entire contents (and anything they were previously based upon)
were included in the new section. For example consider the following:

The [baz] section will be processed as though it had been written in the following way:

It should also be noted that there are no guaranteed overriding semantics, meaning that if you
define something in one template, you should not expect to be able to override it by defining it
again in another template.

Additional Examples
(in top-level sip.conf)

(in accounts/customerl/sip.conf)

account code=0001

[phonel] (def - cust oner 1)
mai | box=phonel@ust oner 1

[phone2] (def - cust omer 1)
mai | box=phone2@ust oner 1

11>
This example defines two phones - phonel and phone2 with settings inherited from
"def-customerl”. The "def-customerl” is a template that inherits from "defaults”, which also is a
template.

The asterisk.conf file

Asterisk Main Configuration File

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Below is a sample of the main Asterisk configuration file, asterisk.conf. Note that this file is not
provided in sample form, because the Makefile creates it when needed and does not touch it
when it already exists.

/etc/asterisk

; Where the Asterisk | oadabl e nodul es are | ocated
astnoddir => /usr/lib/asterisk/nodul es

VWere additional 'library' elements (scripts, etc.) are |ocated
astvarlibdir => /var/lib/asterisk

; Where AG scripts/prograns are | ocated
astagidir => /var/lib/asterisk/agi-bin

; Where spool directories are |ocated

; Voicemail, nonitor, dictation and other apps will create files here
and outgoing call files (used with pbx_spool) nust be placed here

ast spool dir => /var/spool/asterisk

Where the Asterisk process ID (pid) file should be created
astrundir => /var/run/asterisk

Where the Asterisk log files should be created
astlogdir => /var/log/asterisk

[options]

; Under "options" you can enter configuration options

;that you also can set with command |ine options

; Verbosity level for logging (-v) verbose = 0
Debug: "No" or value (1-4)

debug = 3

; Background execution disabled (-f)
nof ork=yes | no

; Always background, even with -v or -d (-F)
al waysf ork=yes | no

; Consol e node (-c¢)
consol e= yes | no

Execute with high priority (-p)
hi ghpriority = yes | no

Initialize crypto at startup (-i)
initcrypto = yes | no

Di sabl e ANSI colors (-n)
nocolor = yes | no

Dunp core on failure (-9)
dunpcore = yes | no

; Run quietly (-q)
quiet = yes | no

; Force timestanping in CLI verbose output (-T)
tinestanp = yes | no

; User to run asterisk as (-U) NOTE: will require changes to

directory and device perm ssions
runuser = asterisk

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

; Group to run asterisk as (-G
rungroup = asterisk

; Enable internal timng support (-1)
internal _timng = yes | no

; Language Options
docunentati on_| anguage = en | es | ru

; These options have no command |ine equival ent

; Cache record() files in another directory until conpletion
cache_record_files = yes | no
record_cache_dir = <dir>

; Build transcode paths via SLI NEAR
transcode_via_sln = yes | no

; send SLI NEAR silence whilechannel is being recorded
transmt_silence_during record = yes | no

; The maxi mum | oad average we accept calls for
maxl oad = 1.0

; The maxi mum nunber of concurrent calls you want to allow
maxcal | s = 255

; Stop accepting calls when free nenory falls bel ow thisamunt specified in MB
m nmenfree = 256

; All ow #exec entries in configuration files
execi ncludes = yes | no

; Don't over-informthe Asterisk sysadm he's a guru
dontwarn = yes | no

; Systemnane. Used to prefix CDR uniqueid and to fill \${SYSTEMNAVE}
systemane = <a_string>

; Shoul d | anguage code be | ast conponent of sound file name or first?
; when off, sound files are searched as <path>/<lang>/<fil e>

; when on, sound files are search as <l ang>/ <path>/<file>

; (only affects relative paths for sound files)

| anguageprefix = yes | no

; Locking node for voicenil

; - lockfile: default, for normal use

; - flock: for where the | ockfile | ocking nethod doesn't work
; eh. on SMB/ Cl FS nounts

| ocknode = lockfile | flock

; Entity ID. This is in the formof a MAC address. It should be universally
; unique. |t nust be unique between servers comunicating with a protoco

; that uses thisvalue. The only thing that uses thiscurrently is DUND ,

; but other things will use it in the future

; entityid=00: 11: 22: 33: 44: 55

[files]

; Changing the followi ng lines may conprom se your security

; Asterisk.ctl is the pipe that is used to connect the rembte CL

; (asterisk -r) to Asterisk. Changing these settings change the

; perm ssions and ownership of thisfile.

; The file is created when Asterisk starts, in the "astrundir" above

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

;astctl perm ssions = 0660

;astctl owner = root

;astctlgroup = asteri sk

;astctl = asterisk.ctl
11></file></path></lang></file></|ang></pat h></a_string></dir>

CLI Prompt
Changing the CLI Prompt

The CLI prompt is set with the ASTERISK_PROMPT UNIX environment variable that you set
from the Unix shell before starting Asterisk

You may include the following variables, that will be replaced by the current value by Asterisk:

%d - Date (year-month-date)

%s - Asterisk system name (from asterisk.conf)
%h - Full hostname

%H - Short hostname

%t - Time

%u - Username
%g - Groupname
%% - Percent sign

® o6# - '#'if Asterisk is run in console mode, " if running as remote console
® %Cn[;n] - Change terminal foreground (and optional background) color to specified A full list of colors may be found in
include/asterisk/term.h

On systems which implement getloadavg(3), you may also use:

® %l1 - Load average over past minute
® %I2 - Load average over past 5 minutes
® %I3 - Load average over past 15 minutes

The Asterisk Dialplan

The Asterisk dialplan

The Asterisk dialplan is divided into contexts. A context is simply a group of extensions. For each
"line" that should be able to be called, an extension must be added to a context. Then, you
configure the calling "line" to have access to this context.

If you change the dialplan, you can use the Asterisk CLI command "dialplan reload" to load the
new dialplan without disrupting service in your PBX.

Extensions are routed according to priority and may be based on any set of characters (a-z),
digits, #, and *. Please note that when matching a pattern, "N", "X", and "Z" are interpreted as
classes of digits.

For each extension, several actions may be listed and must be given a unique priority. When
each action completes, the call continues at the next priority (except for some modules which use
explicitly GOTO's).

Extensions frequently have data they pass to the executing application (most frequently a string).

You can see the available dialplan applications by entering the "core show applications"
command in the CLI.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

In this version of Asterisk, dialplan functions are added. These can be used as arguments to any
application. For a list of the installed functions in your Asterisk, use the "core show functions"
command.

Example dialplan

The example dial plan, in the configs/extensions.conf.sample file is installed as extensions.conf if
you run "make samples" after installation of Asterisk. This file includes many more instructions
and examples than this file, so it's worthwhile to read it.

Special extensions

There are some extensions with important meanings:

® s - What to do when an extension context is entered (unless overridden by the low level channel interface) This is used in macros, and
some special cases. "s" is not a generic catch-all wildcard extension.

® i - What to do if an invalid extension is entered

® h - The hangup extension, executed at hangup

® t- What to do if nothing is entered in the requisite amount of time.

® T-This is the extension that is executed when the 'absolute' timeout is reached. See "core show function TIMEOUT" for more information
on setting timeouts.

® e - This extension will substitute as a catchall for any of the ', 't', or 'T' extensions, if any of them do not exist and catching the error in a
single routine is desired. The function EXCEPTION may be used to query the type of exception or the location where it occurred.

And finally, the extension context "default” is used when either a) an extension context is deleted
while an extension is in use, or b) a specific starting extension handler has not been defined
(unless overridden by the low level channel interface).

IP Quality of Service

Introduction

Asterisk supports different QoS settings at the application level for various protocols on both
signaling and media. The Type of Service (TOS) byte can be set on outgoing IP packets for
various protocols. The TOS byte is used by the network to provide some level of Quality of
Service (QoS) even if the network is congested with other traffic.

Asterisk running on Linux can also set 802.1p CoS marks in VLAN packets for the VolP protocols
it uses. This is useful when working in a switched environment. In fact Asterisk only set priority
for Linux socket. For mapping this priority and VLAN CoS mark you need to use this command:

The table below shows all VoIP channel drivers and other Asterisk modules that support QoS
settings for network traffic. It also shows the type(s) of traffic for which each module can support
setting QoS settings.

Table 2.1: Channel Driver QoS Settings

Signaling Audio Video Text
chan_sip + + + +

chan_skinny =+ + +

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

chan_mgecp + +

chan_unistm =+ +
chan_h323 +
chan_iax2 +

Table 2.2: Other ToS Settings

Signaling Audio Video Text
dundi.conf + (tos setting)

iaxprov.conf =+ (tos setting)

IP TOS values

The allowable values for any of the tos parameters are: CS0, CS1, CS2, CS3, CS4, CS5, CS6,
CS7, AF11, AF12, AF13, AF21, AF22, AF23, AF31, AF32, AF33, AF41, AF42, AF43 and ef
(expedited forwarding),*

The tos parameters also take numeric values.*

Note that on a Linux system, Asterisk must be compiled with libcap in order to use the ef tos
setting if Asterisk is not run as root.

The lowdelay, throughput, reliability, mincost, and none values have been removed in current
releases.

802.1p CoS values

Because 802.1p uses 3 bits of the VLAN header, this parameter can take integer values from 0
to 7.

Recommended values
The recommended values shown below are also included in sample configuration files:

Table 2.3: Recommended QoS Settings

tos | cos
Signaling ¢cs3 3
Audio ef 5

Video afdl 4

Text afdl 3
Other ef
IAX?2

In iax.conf, there is a "tos" parameter that sets the global default TOS for IAX packets generated
by chan_iax2. Since IAX connections combine signalling, audio, and video into one UDP stream,
it is not possible to set the TOS separately for the different types of traffic.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

In iaxprov.conf, there is a "tos" parameter that tells the IAXy what TOS to set on packets it
generates. As with the parameter in iax.conf, IAX packets generated by an IAXy cannot have
different TOS settings based upon the type of packet. However different IAXy devices can have
different TOS settings.

SIP

In sip.conf, there are four parameters that control the TOS settings: "tos_sip", "tos_audio”,
"tos_video" and "tos_text". tos_sip controls what TOS SIP call signaling packets are set to.
tos_audio, tos_video and tos_text control what TOS values are used for RTP audio, video, and
text packets, respectively.

There are four parameters to control 802.1p CoS: "cos_sip", "cos_audio”, "cos_video" and
"cos_text". The behavior of these parameters is the same as for the SIP TOS settings described
above.

Other RTP channels

chan_mgcp, chan_h323, chan_skinny and chan_unistim also support TOS and CoS via setting
tos and cos parameters in their corresponding configuration files. Naming style and behavior are
the same as for chan_sip.

Reference

IEEE 802.1Q Standard: http://standards.ieee.org/getieee802/download/802.1Q-1998.pdfRelated
protocols: IEEE 802.3, 802.2, 802.1D, 802.1Q

RFC 2474 - "Definition of the Differentiated Services Field (DS field) in the IPv4 and IPv6
Headers", Nichols, K., et al, December 1998.

IANA Assignments, DSCP registry Differentiated Services Field Codepoints
http://www.iana.org/assignments/dscp-registry

To get the most out of setting the TOS on packets generated by Asterisk, you will need to ensure
that your network handles packets with a TOS properly. For Cisco devices, see the previously
mentioned "Enterprise QoS Solution Reference Network Design Guide". For Linux systems see
the "Linux Advanced Routing & Traffic Control HOWTO" at http://www.lartc.org/.

For more information on Quality of Service for VolP networks see the "Enterprise QoS Solution
Reference Network Design Guide" version 3.3 from Cisco at:
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049k

MP3 Support

MP3 Music On Hold

Use of the mpg123 for your music on hold is no longer recommended and is now officially
deprecated. You should now use one of the native formats for your music on hold selections.

However, if you still need to use mp3 as your music on hold format, a format driver for reading

MP3 audio files is available in the asterisk-addons SVN repository on svn.digium.com or in the
asterisk-addons release at http://downloads.asterisk.org/pub/telephony/asterisk/.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://standards.ieee.org/getieee802/download/802.1Q-1998.pdfRelated
http://www.iana.org/assignments/dscp-registry
http://www.lartc.org/
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf
http://downloads.asterisk.org/pub/telephony/asterisk/

ICES

The advent of icecast into Asterisk allows you to do neat things like have a caller stream right
into an ice-cast stream as well as using chan_local to place things like conferences, music on
hold, etc. into the stream.

You'll need to specify a config file for the ices encoder. An example is included in
contrib/asterisk-ices.xml.

Database Support Configuration

Top-level page for information about Database support.

Realtime Database Configuration

Introduction
The Asterisk Realtime Architecture is a new set of drivers and functions implemented in Asterisk.

The benefits of this architecture are many, both from a code management standpoint and from
an installation perspective.

The ARA is designed to be independent of storage. Currently, most drivers are based on SQL,
but the architecture should be able to handle other storage methods in the future, like LDAP.

The main benefit comes in the database support. In Asterisk v1.0 some functions supported
MySQL database, some PostgreSQL and other ODBC. With the ARA, we have a unified
database interface internally in Asterisk, so if one function supports database integration, all
databases that has a realtime driver will be supported in that function.

Currently there are three realtime database drivers:

1. ODBC: Support for UnixODBC, integrated into Asterisk The UnixODBC subsystem supports many different databases, please check
www.unixodbc.org for more information.

2. MySQL: Native support for MySQL, integrated into Asterisk

3. PostgreSQL: Native support for Postgres, integrated into Asterisk

Two modes: Static and Realtime

The ARA realtime mode is used to dynamically load and update objects. This mode is used in
the SIP and IAX2 channels, as well as in the voicemail system. For SIP and IAX2 this is similar to
the v1.0 MYSQL_FRIENDS functionality. With the ARA, we now support many more databases
for dynamic configuration of phones.

The ARA static mode is used to load configuration files. For the Asterisk modules that read
configurations, there's no difference between a static file in the file system, like extensions.conf,
and a configuration loaded from a database.

You just have to always make sure the var_metric values are properly set and ordered as you
expect in your database server if you're using the static mode with ARA (either sequentially or
with the same var_metric value for everybody).

If you have an option that depends on another one in a given configuration file (i.e, 'musiconhold’

depending on 'agent' from agents.conf) but their var_metric are not sequential you'll probably get
default values being assigned for those options instead of the desired ones. You can still use the

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

same var_metric for all entries in your DB, just make sure the entries are recorded in an order
that does not break the option dependency.

That doesn't happen when you use a static file in the file system. Although this might be
interpreted as a bug or limitation, it is not.

Realtime SIP friends

The SIP realtime objects are users and peers that are loaded in memory when needed, then
deleted. This means that Asterisk currently can't handle voicemail notification and NAT
keepalives for these peers. Other than that, most of the functionality works the same way for
realtime friends as for the ones in static configuration.

With caching, the device stays in memory for a specified time. More information about this is to
be found in the sip.conf sample file.

If you specify a separate family called "sipregs" SIP registration data will be stored in that table
and not in the "sippeers" table.

Realtime H.323 friends

Like SIP realtime friends, H.323 friends also can be configured using dynamic realtime objects.
New function in the dial plan: The Realtime Switch

The realtime switch is more than a port of functionality in v1.0 to the new architecture, this is a
new feature of Asterisk based on the ARA. The realtime switch lets your Asterisk server do
database lookups of extensions in realtime from your dial plan. You can have many Asterisk
servers sharing a dynamically updated dial plan in real time with this solution.

Note that this switch does NOT support Caller ID matching, only extension name or pattern
matching.

Capabilities

The realtime Architecture lets you store all of your configuration in databases and reload it

whenever you want. You can force a reload over the AMI, Asterisk Manager Interface or by
calling Asterisk from a shell script with

You may also dynamically add SIP and IAX devices and extensions and making them available
without a reload, by using the realtime objects and the realtime switch.

Configuration in extconfig.conf

You configure the ARA in extconfig.conf (yes, it's a strange name, but is was defined in the early
days of the realtime architecture and kind of stuck).

The part of Asterisk that connects to the ARA use a well defined family name to find the proper
database driver. The syntax is easy:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

=> <realtinme driver="driver">, <db nane="nane">[, <t abl e>]
]11></tabl e></db></real ti ne>

The options following the realtime driver identified depends on the driver.

Defined well-known family names are:

sippeers, sipusers - SIP peers and users
iaxpeers, iaxusers - IAX2 peers and users
voicemail - Voicemail accounts

queues - Queues

queue_members - Queue members
extensions - Realtime extensions (switch)

Voicemail storage with the support of ODBC described in file docs/odbcstorage.tex ([12.1]]).
Limitations

Currently, realtime extensions do not support realtime hints. There is a workaround available by
using func_odbc. See the sample func_odbc.conf for more information.

FreeTDS supported with connection pooling

In order to use a FreeTDS-based database with realtime, you need to turn connection pooling on
in res_odbc.conf. This is due to a limitation within the FreeTDS protocol itself. Please note that
this includes databases such as MS SQL Server and Sybase. This support is new in the current
release.

You may notice a performance issue under high load using UnixODBC. The UnixODBC driver

supports threading but you must specifically enable threading within the UnixODBC configuration
file like below for each engine:

This will enable the driver to service many requests at a time, rather than serially.

FreeTDS

The cdr_tds module now works with most modern release versions of FreeTDS (from at least
0.60 through 0.82). Although versions of FreeTDS prior to 0.82 will work, we recommend using
the latest available version for performance and stability reasons.

The latest release of FreeTDS is available from http://www.freetds.org/

Privacy Configuration

So, you want to avoid talking to pesky telemarketers/charity seekers/poll takers/magazine
renewers/etc?

FTC Don't Call List

The FTC "Don't call" database, this alone will reduce your telemarketing call volume

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.freetds.org/*

considerably. (see: https://www.donotcall.gov/default.aspx) But, this list won't protect from the
Charities, previous business relationships, etc.

Fighting Autodialers

Zapateller detects if callerid is present, and if not, plays the da-da-da tones that immediately
precede messages like, "I'm sorry, the number you have called is no longer in service."

Most humans, even those with unlisted/callerid-blocked numbers, will not immediately slam the
handset down on the hook the moment they hear the three tones. But autodialers seem pretty
quick to do this.

| just counted 40 hangups in Zapateller over the last year in my CDR's. So, that is possibly 40
different telemarketers/charities that have hopefully slashed my back-waters, out-of-the-way,
humble home phone number from their lists.

| highly advise Zapateller for those seeking the nirvana of "privacy"”.

Fighting Empty Caller ID

A considerable percentage of the calls you don't want, come from sites that do not provide
CallerID.

Null callerid's are a fact of life, and could be a friend with an unlisted number, or some charity
looking for a handout. The PrivacyManager application can help here. It will ask the caller to
enter a 10-digit phone number. They get 3 tries(configurable), and this is configurable, with
control being passed to next priority where you can check the channelvariable
PRIVACYMGRSTATUS. If the callerid was valid this variable will have the value SUCCESS,
otherwise it will have the value FAILED.

PrivacyManager can't guarantee that the number they supply is any good, tho, as there is no way
to find out, short of hanging up and calling them back. But some answers are obviously wrong.
For instance, it seems a common practice for telemarketers to use your own number instead of
giving you theirs. A simple test can detect this. More advanced tests would be to look for 555
numbers, numbers that count up or down, numbers of all the same digit, etc.

PrivacyManager can be told about a context where you can have patterns that describe valid
phone numbers. If none of the patterns match the input, it will be considered a non-valid
phonenumber and the user can try again until the retry counter is reached. This helps in
resolving the issues stated in the previous paragraph.

My logs show that 39 have hung up in the PrivacyManager script over the last year.

(Note: Demanding all unlisted incoming callers to enter their CID may not always be appropriate
for all users. Another option might be to use call screening. See below.)

Using Welcome Menus for Privacy

Experience has shown that simply presenting incoming callers with a set of options, no matter
how simple, will deter them from calling you. In the vast majority of situations, a telemarketer will

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://www.donotcall.gov/default.aspx

simply hang up rather than make a choice and press a key.

This will also immediately foil all autodialers that simply belch a message in your ear and hang
up.

Example usage of Zapateller and PrivacyManager

s, 1, Answer

exten => s, 2, Set Var, r epeat count =0

exten => s, 3, Zapatel |l er, nocal l erid

exten => s, 4, Pri vacyManager

;; dothisif they don't enter a nunber to Privacy Manager

exten => s,5, Gotol f($["${ PR VACYMCRSTATUS}" = "FAI LED"] ?s, 105)
exten => s, 6, Gotol f($["${CALLERI D(nun)}" = "7773334444" & "${CALLERI D(nane)}" : "Privacy Manager"
]?callerid-liar,s,1:s,7)

exten => s, 7, Dial (Sl P/ yourphone)

exten => s, 105, Background(tt-all busy)

exten => s, 106, Background(tt-sonet hi ngwr ong)

exten => s, 107, Background(tt-nmonkeysi ntro)

exten => s, 108, Background(tt-nmonkeys)

exten => s, 109, Background(tt-weasel s)

exten => s, 110, Hangup

11>

| suggest using Zapateller at the beginning of the context, before anything else, on incoming
calls.This can be followed by the PrivacyManager App.

Make sure, if you do the PrivacyManager app, that you take care of the error condition! or their
non-compliance will be rewarded with access to the system. In the above, if they can't enter a
10-digit number in 3 tries, they get the humorous "I'm sorry, but all household members are
currently helping other telemarketers...", "something is terribly wrong", "monkeys have carried
them away...", various loud monkey screechings, "weasels have...", and a hangup. There are

plenty of other paths to my torture scripts, | wanted to have some fun.

In nearly all cases now, the telemarketers/charity-seekers that usually get thru to my main intro,
hang up. | guess they can see it's pointless, or the average telemarketer/charity-seeker is
instructed not to enter options when encountering such systems. Don't know.

Making life difficult for telemarketers
| have developed an elaborate script to torture Telemarketers, and entertain friends.

While mostly those that call in and traverse my teletorture scripts are those we know, and are
doing so out of curiosity, there have been these others from Jan 1st,2004 thru June 1st, 2004:
(the numbers may or may not be correct.)

® 603890zzzz - hung up telemarket options.

® "Integrated Sale" - called a couple times. hung up in telemarket options

® "UNITED STATES GOV" - maybe a military recruiter, trying to lure one of my sons.

® 800349zzzz - hung up in charity intro

® 800349zzzz - hung up in charity choices, intro, about the only one who actually travelled to the bitter bottom of the scripts!
® 216377zzzz - hung up the magazine section

® 626757zzzz = "LIR " (pronounced "Liar"?) hung up in telemarket intro, then choices

® 757821zzzz - hung up in new magazine subscription options.

That averages out to maybe 1 a month. That puts into question whether the ratio of the amount
of labor it took to make the scripts versus the benefits of lower call volumes was worth it, but,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

well, | had fun, so what the heck.

But, that's about it. Not a whole lot. But | haven't had to say "NO" or "GO AWAY" to any of these
folks for about a year now ...!

Using Call Screening

Another option is to use call screening in the Dial command. It has two main privacy modes, one
that remembers the CID of the caller, and how the callee wants the call handled, and the other,
which does not have a "memory".

Turning on these modes in the dial command results in this sequence of events, when someone
calls you at an extension:

The caller calls the Asterisk system, and at some point, selects an option or enters an extension
number that would dial your extension.

Before ringing your extension, the caller is asked to supply an introduction. The application asks
them: "After the tone, say your name". They are allowed 4 seconds of introduction.

After that, they are told "Hang on, we will attempt to connect you to your party. Depending on
your dial options, they will hear ringing indications, or get music on hold. | suggest music on hold.

Your extension is then dialed. When (and if) you pick up, you are told that a caller presenting
themselves as their recorded intro is played is calling, and you have options, like being
connected, sending them to voicemail, torture, etc.

You make your selection, and the call is handled as you chose.

There are some variations, and these will be explained in due course.

To use these options, set your Dial to something like:

3, 3, Di al (DAHDI / 5r 3&DAHDI / 6r 3, 35, t PA(beep))
11>

or:

3, 3, Di al (DAHDI / 5r 3&DAHDI / 6r 3, 35, t nP(sonet hi ng) A(beep))
11>

or:

3, 3, Di al (DAHDI / 5r 3&DAHDI / 61 3, 35, t npA(beep))
11>

The 't' allows the dialed party to transfer the call using '#'. It's optional.
The 'm"is for music on hold. | suggest it. Otherwise, the calling party gets to hear all the ringing,
and lack thereof. It is generally better to use Music On Hold. Lots of folks hang up after the 3rd or

4th ring, and you might lose the call before you can enter an option!

The 'P' option alone will database everything using the extension as a default 'tree'. To get

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

multiple extensions sharing the same database, use P(some-shared-key). Also, if the same
person has multiple extensions, use P(unique-id) on all their dial commands.

Use little 'p’ for screening. Every incoming call will include a prompt for the callee's choice.

The A(beep), will generate a 'beep’ that the callee will hear if they choose to talk to the caller. It's
kind of a prompt to let the callee know that he has to say 'hi'. It's not required, but I find it helpful.

When there is no CallerID, P and p options will always record an intro for the incoming caller.
This intro will be stored temporarily in the /var/lib/asterisk/sounds/priv-callerintros dir, under
the name NOCALLERID_extension channelname and will be erased after the callee decides
what to do with the call.

Of course, NOCALLERID is not stored in the database. All those with no CALLERID will be
considered "Unknown".

Call Screening Options

Two other options exist, that act as modifiers to the privacy options 'P' and 'p'. They are 'N' and
'n'. You can enter them as dialing options, but they only affect things if P or p are also in the
options.

'N' says, "Only screen the call if no CallerID is present”. So, if a callerID were supplied, it will
come straight thru to your extension.

'n' says, "Don't save any introductions”. Folks will be asked to supply an introduction ("At the
tone, say your name") every time they call. Their introductions will be removed after the callee
makes a choice on how to handle the call. Whether the P option or the p option is used, the
incoming caller will have to supply their intro every time they call.

Screening Calls with Recorded Introductions

Philosophical Side Note

The 'P' option stores the CALLERID in the database, along with the callee's choice of actions, as
a convenience to the CALLEE, whereas introductions are stored and re-used for the
convenience of the CALLER.

Introductions

Unless instructed to not save introductions (see the 'n' option above), the screening modes will
save the recordings of the caller's names in the directory /var/lib/asterisk/sounds/priv-callerintros,
if they have a CallerID. Just the 10-digit callerid numbers are used as filenames, with a ".gsm" at
the end.

Having these recordings around can be very useful, however...

First of all, if a callerid is supplied, and a recorded intro for that number is already present, the
caller is spared the inconvenience of having to supply their name, which shortens their call a bit.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Next of all, these intros can be used in voicemail, played over loudspeakers, and perhaps other
nifty things. For instance:

S, 6, Set (PATH=/ var/|i b/ asteri sk/ sounds/ priv-callerintros)
exten => s, 7, Systen(/usr/bin/play ${PATH}/${CALLERI D(nunm)}. gsnmg, 0)
11>

When a call comes in at the house, the above priority gets executed, and the callers intro is
played over the phone systems speakers. This gives us a hint who is calling.

(Note: the ,0 option at the end of the System command above, is a local mod | made to the
System command. It forces a 0 result code to be returned, whether the play command
successfully completed or not. Therefore, | don't have to ensure that the file exists or not. While
I've turned this mod into the developers, it hasn't been incorporated yet. You might want to write
an AGI or shell script to handle it a little more intelligently)

And one other thing. You can easily supply your callers with an option to listen to, and re-record
their introductions. Here's what | did in the home system's extensions.conf. (assume that a
Goto(home-introduction,s,1) exists somewhere in your main menu as an option):

s, 1, Background(intro-options) ;; Script:
;; To hear your Introduction, dial 1.

;; to record a newintroduction, dial 2.
;; toreturnto the main nmenu, dial 3.

;; to hear what thisis all about, dial 4.

exten => 1,1, Pl ayback, priv-call erintros/${CALLERI D(num }
exten => 1,2, Goto(s, 1)

exten => 2,1, Got o(honme-i ntroduction-record,s, 1)

exten => 3,1, Goto(honeline,s,7)

exten => 4,1, Pl ayback(intro-intro) ;; Script:

; This may seema little strange, but it really is a neat

;; thing, both for you and for us. |'ve taped a short i ntroduction
;; for many of the folks who normally call us. Using the Caller ID
;; fromeach inconming call, the system plays the introduction

;; for that phone nunber over a speaker, just as the call cones in.
;5 This hel ps the fol ks

here in the house nore quickly determne who is calling.

and gets the right ones to gravitate to the phone.
;7 You can listen to, and record a newintro for your phone nunber
;; using this nenu.
exten => 4,2, Goto(s, 1)

exten =>t, 1, Goto(s,1)
exten => i, 1, Background(invalid)
exten =>i,2,CGoto(s,1)
exten => o, 1, Goto(s, 1)

[hone-i ntroduction-record]

exten => s, 1, Background(intro-record-choices) ;; Script:
If you want sone advice about recording your
introduction, dial 1.
otherw se, dial 2, and introduce yourself after

;; the beep.

exten => 1, 1, Pl ayback(i ntro-record)

; Your introduction should be short and sweet and cri sp.

Your introduction will be linmted to 4 seconds.

;; This is NOT neant to be a voice nmail nessage, so
pl ease, don't say anything about why you are calling.

;; After we are done making the recording, your introduction

;7 Wil be saved for playback.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

If you are the only person that would call fromthis nunber,
;; please state your name. Ot herw se, state your business
;; or residence nane instead. For instance, if you are
;; friend of the fanmly, say, Oie MPherson, and both
;7 you and your kids might call here a lot, you m ght
;; say: "This is the distinguished Aie MPherson Residence!"
;; If you are the only person calling, you might say this:

"This is the illustrious Kermt MFrog! Pick up the Phone, someone!!
;; If you are calling froma business, you m ght pronounce a nore sedate introduction, |ike,
;; "Fritz from McDonalds calling.", or perhaps the nore original introduction:
;7 "John, fromthe Park County Morgue. You stab 'em we slab 'em"
;7 Just one caution: the kids will hear what you record every tinme
;; you call. So watch your Ianguage!
I will begin recording after the tone.

;; When you are done, hit the # key. Gather your thoughts and get
;; ready. Renenber, the # key will end the recording, and play back
;; your intro. Good Luck, and Thank you!"

exten => 1,2, Goto(2,1)

exten => 2,1, Background(intro-start)

;7 OK here we go! After the beep, please give your introduction.
exten => 2,2, Background(beep)

exten => 2,3, Record(priv-callerintros/${CALLERI D(nun)}:gsm 4)

exten => 2,4, Background(priv-callerintros/${CALLER D(num})
exten => 2,5, Got o(honme-introduction,s, 1)

exten =>t, 1, Goto(s,1)

exten => i, 1, Background(invalid)

exten =>i,2,CGoto(s, 1)

exten => o, 1, Goto(s, 1)

11>

In the above, you'd most likely reword the messages to your liking, and maybe do more
advanced things with the 'error' conditions (i,0,t priorities), but | hope it conveys the idea.

Asterisk Extension Language (AEL)

Top-level page for all things AEL

Introduction to AEL

AEL is a specialized language intended purely for describing Asterisk dial plans.

The current version was written by Steve Murphy, and is a rewrite of the original version.

This new version further extends AEL, and provides more flexible syntax, better error messages,
and some missing functionality.

AEL is really the merger of 4 different 'languages’, or syntaxes:

1. The first and most obvious is the AEL syntax itself. A BNF is provided near the end of this document.

2. The second syntax is the Expression Syntax, which is normally handled by Asterisk extension engine, as expressions enclosed in $[...].
The right hand side of assignments are wrapped in $[...] by AEL, and so are the if and while expressions, among others.

3. The third syntax is the Variable Reference Syntax, the stuff enclosed in ${..} curly braces. It's a bit more involved than just putting a
variable name in there. You can include one of dozens of ‘functions’, and their arguments, and there are even some string manipulation
notation in there.

4. The last syntax that underlies AEL, and is not used directly in AEL, is the Extension Language Syntax. The extension language is what
you see in extensions.conf, and AEL compiles the higher level AEL language into extensions and priorities, and passes them via function
calls into Asterisk.

Embedded in this language is the Application/AGI commands, of which one application call per step, or priority can be made. You can
think of this as a "macro assembler" language, that AEL will compile into.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Any programmer of AEL should be familiar with its syntax, of course, as well as the Expression
syntax, and the Variable syntax.

AEL and Asterisk in a Nutshell

Asterisk acts as a server. Devices involved in telephony, like DAHDI cards, or Voip phones, all
indicate some context that should be activated in their behalf. See the config file formats for 1AX,
SIP, dahdi.conf, etc. They all help describe a device, and they all specify a context to activate
when somebody picks up a phone, or a call comes in from the phone company, or a voip phone,
etc.

AEL about Contexts
Contexts are a grouping of extensions.

Contexts can also include other contexts. Think of it as a sort of merge operation at runtime,
whereby the included context's extensions are added to the contexts making the inclusion.

AEL about Extensions and priorities

A Context contains zero or more Extensions. There are several predefined extensions. The "s"
extension is the "start" extension, and when a device activates a context the "s" extension is the
one that is going to be run. Other extensions are the timeout "t" extension, the invalid response,
or "i" extension, and there's a "fax" extension. For instance, a normal call will activate the "s"
extension, but an incoming FAX call will come into the "fax" extension, if it exists. (BTW, asterisk
can tell it's a fax call by the little "beep" that the calling fax machine emits every so many
seconds.).

Extensions contain several priorities, which are individual instructions to perform. Some are as
simple as setting a variable to a value. Others are as complex as initiating the Voicemail
application, for instance. Priorities are executed in order.

When the 's" extension completes, asterisk waits until the timeout for a response. If the response
matches an extension's pattern in the context, then control is transferred to that extension.
Usually the responses are tones emitted when a user presses a button on their phone. For
instance, a context associated with a desk phone might not have any "s" extension. It just plays a
dialtone until someone starts hitting numbers on the keypad, gather the number, find a matching
extension, and begin executing it. That extension might Dial out over a connected telephone line
for the user, and then connect the two lines together.

The extensions can also contain "goto" or "jump" commands to skip to extensions in other
contexts. Conditionals provide the ability to react to different stimuli, and there you have it.

AEL about Macros

Think of a macro as a combination of a context with one nameless extension, and a subroutine. It
has arguments like a subroutine might. A macro call can be made within an extension, and the
individual statements there are executed until it ends. At this point, execution returns to the next
statement after the macro call. Macros can call other macros. And they work just like function
calls.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AEL about Applications

Application calls, like "Dial()", or "Hangup()", or "Answer()", are available for users to use to
accomplish the work of the dialplan. There are over 145 of them at the moment this was written,
and the list grows as new needs and wants are uncovered. Some applications do fairly simple
things, some provide amazingly complex services.

Hopefully, the above objects will allow you do anything you need to in the Asterisk environment!

Getting Started with AEL

The AEL parser (res_ael.so) is completely separate from the module that parses extensions.conf
(pbx_config.so). To use AEL, the only thing that has to be done is the module res_ael.so must be
loaded by Asterisk. This will be done automatically if using ‘autoload=yes' in
/etc/asterisk/modules.conf. When the module is loaded, it will look for 'extensions.ael’ in
/etc/asterisk/. extensions.conf and extensions.ael can be used in conjunction with each other if
that is what is desired. Some users may want to keep extensions.conf for the features that are
configured in the 'general’ section of extensions.conf.

To reload extensions.ael, the following command can be issued at the CLI:

AEL Debugging

Right at this moment, the following commands are available, but do nothing:

® Enable AEL contexts debug

® Enable AEL macros debug

® Enable AEL read debug

® Enable AEL tokens debug

® Disable AEL debug messages

@ If things are going wrong in your dialplan, you can use the following facilities to debug your file:

1. The messages log in /var/log/asterisk. (from the checks done at load time).
2. The "show dialplan" command in asterisk
3. The standalone executable, "aelparse" built in the utils/ dir in the source.

About "aelparse”

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

You can use the "aelparse" program to check your extensions.ael file before feeding it to
asterisk. Wouldn't it be nice to eliminate most errors before giving the file to asterisk?

aelparse is compiled in the utils directory of the asterisk release. It isn't installed anywhere (yet).
You can copy it to your favorite spot in your PATH.

aelparse has two optional arguments:

1. -d - Override the normal location of the config file dir, (usually /etc/asterisk), and use the current directory instead as the config file dir.
Aelparse will then expect to find the file "./extensions.ael" in the current directory, and any included files in the current directory as well.

2. -n - Don't show all the function calls to set priorities and contexts within asterisk. It will just show the errors and warnings from the parsing
and semantic checking phases.

General Notes about AEL Syntax

Note that the syntax and style are now a little more free-form. The opening " (curly-braces) do
not have to be on the same line as the keyword that precedes them. Statements can be split
across lines, as long as tokens are not broken by doing so. More than one statement can be
included on a single line. Whatever you think is best!

You can just as easily say,

as you can say:

or:

or:

AEL Keywords

The AEL keywords are case-sensitive. If an application name and a keyword overlap, there is
probably good reason, and you should consider replacing the application call with an AEL
statement. If you do not wish to do so, you can still use the application, by using a capitalized
letter somewhere in its name. In the Asterisk extension language, application names are NOT
case-sensitive.

The following are keywords in the AEL language:

abstract
context
macro
globals
ignorepat
switch

if

ifTime
else

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

random
goto
jump
local
return
break
continue
regexten
hint

for

while
case
pattern
default NOTE: the "default" keyword can be used as a context name, for those who would like to do so.
catch
switches
eswitches
includes

AEL Procedural Interface and Internals

AEL first parses the extensions.ael file into a memory structure representing the file. The entire
file is represented by a tree of "pval” structures linked together.

This tree is then handed to the semantic check routine.
Then the tree is handed to the compiler.
After that, it is freed from memory.

A program could be written that could build a tree of pval structures, and a pretty printing function
is provided, that would dump the data to a file, or the tree could be handed to the compiler to
merge the data into the asterisk dialplan. The modularity of the design offers several
opportunities for developers to simplify apps to generate dialplan data.

AEL version 2 BNF
(hopefully, something close to bnf).

First, some basic objects

<word> a | exical token consisting of characters matching this
pattern:
[-a-zA-Z0-9" [/ . \<\S*\+I $#\[\]][-a-zA-Z0-9" /. I*\ RN AS\{\}S#A[\]]*
<word3-list> a concatenation of up to 3 <word>s.
<col | ected-word> all characters encountered until the character
that follows the <collected-word> in the gramar.

<file> :== <objects>
<obj ect s> : == <obj ect >

| <objects> <object>
<obj ect > : == <cont ext >

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

| <macro>
| <gl obal s>

<context> : ‘context' <word> '{' <elenments> '}’

context' <word> '{' '}’

context' 'default' '{' <elenents> '}’

context' 'default' "{' '}’

abstract' 'context' <word> '{' <elenments> '}’
abstract' 'context' <word> '{'" '}’

abstract' 'context' 'default' '{' <elenents> '}’
abstract' 'context' 'default' '{' '}’

<macro> :== 'macro’ <word> ' (' <arglist>"')" '{' <macro_stat enents>
I}I

| 'macro' <word> ' (' <arglist>"')" "{'" "}’

| "macro' <word> "'(' ")" "{' <macro_statenments> '}’

| lrmcrol <\,\Dr d> l(l l)l l{l l}l

<gl obal s> : == "globals'" "{" <global _statenents> '}’
I 1 gl Obal SI 1 {I 1 }I
<gl obal _statenments> : == <gl obal _st at enent >

| <gl obal _statenents> <gl obal _stat enent >

<gl obal _statenment> : == <word> '=' <collected-word> ";"'
<arglist> :== <word>

| <arglist>"," <word>
<el ement s> : == <el enent >

| <el ements> <el enent >

<el enent > : == <ext ensi on>
| <includes>
| <switches>
| <eswitches>
| <ignorepat>
I
I
|

<word> '='" <collected-word> ';'
"local' <word> '=' <collected-word> ";"'
<ignorepat> :== 'ignorepat' '=> <word> "';'

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<extension> : == <word> '=>' <statenent>
| 'regexten' <word> '=>' <statenent>
| "hint' ' (' <word3-list>")"' <word> '=>" <statenent>
| 'regexten' '"hint' '(' <word3-list>")"' <word> '=>'
<st at enent >

<statements> : == <statenent>
| <statenents> <statenent>

<if _head> :=="if" '(' <collected-word> ")’

<random head> :== 'random ' (' <collected-word> ")’

<ifTime_head> :=="ifTime' '"(' <word3-list>":" <word3-list>":"

<word3-list>"|" <word3-list>"'"|" <word3-list>"|"'" <word3-list> ")’
| "ifTime' "(' <word> '|' <word3-list>"]|"

<word3-list>"|" <word3-list> ")’

<wor d3-1list> :== <word>

| <word> <word>
| <word> <word> <word>

<switch_head> :== "switch' ' (' <collected-word> ")" '{'
<statenment> :=="'{' <statenents> '}’

<word> '='" <coll ected-word> ";"'

"local' <word> '=" <collected-word> "';"

"junmp' <junptarget> "';
<word> "':'
| "for" '(' <collected-word> ";' <collected-word> ";"
<col | ected-word> "')"' <statenent>
| "while" "(" <collected-word> ')' <statement>
<swi tch_head> '}’
<swi t ch_head> <case_statenents> '}’

I

I

| 'goto' <target> ';'

| 1 1
I

"& macro_call ';
<application_call> ";"
<application_call>

"break' ;'

<col |l ected-word> ' ;

I

I

|

I

I

I

| 'return' '

| 'continue ;'

| <random head> <st at enent >

| <random head> <statenent> 'else' <statenent>
| <if_head> <stat enent >

| <if_head> <statenent> 'else' <statenent>

| <ifTinme_head> <statenent>

| <ifTinme_head> <statenent> 'else' <statenment>
I

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<target> : == <word>

| <word> '|' <word>
| <word> "'|' <word> '|' <word>
| "default' '|' <word> '|"' <word>
| <word>"',' <word>
| <word>"',' <word>"',' <word>
| 'default' ',' <word>"',' <word>
<j unpt arget > : == <wor d>
| <word>"',' <word>
| <word>"',' <word>"'@ <word>
<word> '@ <word>

<word> '@ 'default’
<macro_call> :== <word> ' (' <eval _arglist>")"
| <word> ‘(" ")’

I
| <word>"',' <word>"'@ 'default’
|

<application_call _head> :== <word> ' ('
<application_call> :== <application_call_head> <eval _arglist>")"'
| <application_call _head> ")’

<eval _arglist> :== <col | ect ed-word>
| <eval _arglist>"," <coll ected-word>
| /* nothing */
| <eval _arglist>"," /* nothing */
<case_statement s> : == <case_st at ement >

| <case_statenent s> <case_st at enent >

<case_statenent> :== 'case' <word> ':' <statenents>
| 'default' '":' <statenents>
| 'pattern' <word> ':' <statenents>
| 'case' <word> ':'

| 'default' ":'
| 'pattern’ <word> ':'
<macro_st at enent s> : == <mmcro_st at enent >

| <nmacro_st at enent s> <pacr o_st at enent >

<macro_statenment > : == <st atenent >
| 'catch' <word> '{' <statenents> '}’
<switches> :== "switches' "{' <switchlist> "'}"
| 'switches' "{' '}’
<eswitches> :== "eswitches' '{' <switchlist>"}"'
| 'eswitches' "{' '}’

<switchlist> :== <word> " ;'

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<i ncl udeslist> : == <includedname> ';'
| <includednanme> '|' <word3-list>":" <word3-list>":"'
<word3-list>"|"'" <word3-list>"|'" <word3-list>"|"'" <word3-list>";"
| <includedname> '|' <word> "'|"' <word3-list> "]’
<word3-list>"|" <word3-list>";"
| <includeslist> <includednanme> ";'
| <includeslist> <includednanme> '|' <word3-list> "':"'
<word3-list>":" <word3-list>"|" <word3-list>"|" <word3-list> "]’
<word3-list> "'
| <includeslist> <includednanme> '|' <word> '|' <word3-list>
"I <word3-list>"'|'" <word3-list>";'
<i ncl udednane> : == <word>
| 'default’

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<includes> :== "includes' '{' <includeslist>"}"'
| '"includes' '"{' "}’

AEL Example Usages

Example usages of AEL

AEL Comments
Comments begin with // and end with the end of the line.

Comments are removed by the lexical scanner, and will not be recognized in places where it is
busy gathering expressions to wrap in $[] , or inside application call argument lists. The safest
place to put comments is after terminating semicolons, or on otherwise empty lines.

AEL Context

Contexts in AEL represent a set of extensions in the same way that they do in extensions.conf.

A context can be declared to be "abstract", in which case, this declaration expresses the intent of
the writer, that this context will only be included by another context, and not "stand on its own".
The current effect of this keyword is to prevent "goto " statements from being checked.

NoOp(generic |ongdistance dialing actions in the US);

}
11>

AEL Extensions

To specify an extension in a context, the following syntax is used. If more than one application is
be called in an extension, they can be listed in order inside of a block.

Pl ayback(tt - nmonkeys);
8000 => {
NoOp(one) ;
NoQp(t wo) ;
NoOp(three);
b
_5XXX => NoOp(it's a pattern!);

}
11>

Two optional items have been added to the AEL syntax, that allow the specification of hints, and
a keyword, regexten, that will force the numbering of priorities to start at 2.

The ability to make extensions match by CID is preserved in AEL; just use /' and the CID number
in the specification. See below.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

NoQp(it's a pattern!);
}

context default {
hint (Sip/1) _5XXX => NoOp(it's a pattern!);
}

context default {
regexten hint(Sip/1l) _5XXX => NoOp(it's a pattern!);

}
11>
The regexten must come before the hint if they are both present.

CID matching is done as with the extensions.conf file. Follow the extension name/number with a
slash and the number to match against the Caller ID:

{ NoOp(hello, 3345); }
}
11>

In the above, the 819/7079953345 extension will only be matched if the CallerID is 7079953345,
and the dialed number is 819. Hopefully you have another 819 extension defined for all those
who wish 819, that are not so lucky as to have 7079953345 as their CallerID!

AEL Includes

Contexts can be included in other contexts. All included contexts are listed within a single block.

Time-limited inclusions can be specified, as in extensions.conf format, with the fields described in
the wiki page Asterisk cmd GotolfTime.

AEL including other files

You can include other files with the #include "filepath" construct.

An interesting property of the #include, is that you can use it almost anywhere in the .ael file. It is
possible to include the contents of a file in a macro, context, or even extension. The #include
does not have to occur at the beginning of a line. Included files can include other files, up to 50
levels deep. If the path provided in quotes is a relative path, the parser looks in the config file
directory for the file (usually /etc/asterisk).

AEL Dialplan Switches

Switches are listed in their own block within a context. For clues as to what these are used for,
see Asterisk - dual servers, and Asterisk config extensions.conf.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AEL Ignorepat

ignorepat can be used to instruct channel drivers to not cancel dialtone upon receipt of a
particular pattern. The most commonly used example is '9'".

9;
11>
AEL Variables

Variables in Asterisk do not have a type, so to define a variable, it just has to be specified with a
value.

Global variables are set in their own block.

Variables can be set within extensions as well.

{
x=5;
y=bl ah;
di vexanpl e=10/ 2
NoOp(x is ${x} and y is ${y} !);

}
11>

NOTE: AEL wraps the right hand side of an assignment with $[] to allow expressions to be used
If this is unwanted, you can protect the right hand side from being wrapped by using the Set()
application. Read the README.variables about the requirements and behavior of $[]

expressions.

NOTE: These things are wrapped up in a $[] expression: The while() test; the if() test; the middle
expression in the for(x; y; z) statement (the y expression); Assignments - the right hand side, so
a=b - Set(a=%[b])

Writing to a dialplan function is treated the same as writing to a variable.

{
CALLERI D(nane) =Chi ckenMan;

NoOp(My nanme is ${CALLERI D(nane)} !);

}
11>

You can declare variables in Macros, as so:

AEL Local Variables

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

In 1.2, and 1.4, ALL VARIABLES are CHANNEL variables, including the function arguments and
associated ARG1, ARG2, etc variables. Sorry.

In trunk (1.6 and higher), we have made all arguments local variables to a macro call. They will
not affect channel variables of the same name. This includes the ARG1, ARGZ2, etc variables.

Users can declare their own local variables by using the keyword 'local’ before setting them to a
value;

In the above example, Myvar, firstarg, and secondarg are all local variables, and will not be
visible to the calling code, be it an extension, or another Macro.

If you need to make a local variable within the Set() application, you can do it this way:

AEL Conditionals

AEL supports if and switch statements, like AEL, but adds ifTime, and random. Unlike the original
AEL, though, you do NOT need to put curly braces around a single statement in the "true" branch
of an if(), the random(), or an ifTime() statement. The if(), ifTime(), and random() statements
allow optional else clause.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Di al (S P/ ${ EXTEN}) ;
i f ("${D ALSTATUS}" = "BUSY")

{

NoOp(yessir);

Voi cemai | (${ EXTEN}, b) ;
}
el se

Voi cenai | (${ EXTEN}, u) ;

i fTinme (14:00-25:00, sat-sun,,)
Voi cenai | (${ EXTEN}, b) ;

el se

{
Voi cenai | (${ EXTEN}, u) ;
NoOp(hi, there!);

}
randon(51) NoOp(This should appear 51% of the tine);
randon(60)
{
NoOp(This shoul d appear 60% of the tine);
}
el se
{
randon(75)
{
NoQp(This shoul d appear 30% of the tine!);
}
el se
{
NoQp(This shoul d appear 10% of the tinme!);
}
}
}
777X => {
switch (${EXTEN}) {
case 7771:
NoQp(You called 7771!);
br eak;
case 7772:
NoOp(You called 7772!);
br eak;
case 7773:
NoOp(You cal led 7773!);
/1 fall thru-
pattern 777[4-9]:
NoOp(You cal l ed 777 sonet hing!);
default: NoOp(In the default cl ause!);
}
}
}
S
1, The conditional expression in if() statements (the "${DIALSTATUS}" = "BUSY" above) is wrapped by the compiler in $[] for
evaluation.
', Neither the switch nor case values are wrapped in $[]; they can be constants, or ${var} type references only.
', AEL generates each case as a separate extension. case clauses with no terminating 'break’, or 'goto’, have a goto inserted, to

the next clause, which creates a 'fall thru' effect.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

1 AEL introduces the ifTime keyword/statement, which works just like the if() statement, but the expression is a time value, exactly
like that used by the application GotolfTime(). See Asterisk cmd GotolfTime

' The pattern statement makes sure the new extension that is created has an '_' preceding it to make sure asterisk recognizes the
extension name as a pattern.

' Every character enclosed by the switch expression's parenthesis are included verbatim in the labels generated. So watch out for
spaces!

1 NEW: Previous to version 0.13, the random statement used the "Random()" application, which has been deprecated. It now
uses the RAND() function instead, in the Gotolf application.

AEL goto, jump, and labels

This is an example of how to do a goto in AEL.

{
begi n:
NoOp(| nfinite Loop! yay!);
Wai t(1);
gotobegin; // go to label in sane extension
}
3=> {
gotos,
begin; // go to label in different extension
}
4=> {
got o got oexanpl e, s, begin; // overkill go to | abel in sane context
}
}
context gotoexanpl e2 {
s = {
end:

got o got oexanpl e, s, begin; // go to label in different context

}
11>

You can use the special label of "1" in the goto and jump statements. It means the "first"
statement in the extension. | would not advise trying to use numeric labels other than "1" in goto's
or jJumps, nor would | advise declaring a "1" label anywhere! As a matter of fact, it would be bad
form to declare a numeric label, and it might conflict with the priority numbers used internally by
asterisk.

The syntax of the jump statement is: jump extension[,priority][@context] If priority is absent, it

defaults to "1". If context is not present, it is assumed to be the same as that which contains the
"jJump”.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

begi n:
NoOp(Infinite Loop! yay!);
Vait(1);
jump s; // go to first extension in sane extension
}
3=>{
junmp s, begin; // go to label in different extension
}
4=> {
junmp s, begi n@ot oexanple; // overkill go to |abel in same context }
}
context gotoexanpl e2 {
s =>{
end:
junp s@otoexanple; // go to label in different context }
}
11>
' Goto labels follow the same requirements as the Goto() application, except the last value has to be a label. If the label does not
exist, you will have run-time errors. If the label exists, but in a different extension, you have to specify both the extension name
and label in the goto, as in: goto s,z; if the label is in a different context, you specify context,extension,label. There is a note
about using goto's in a switch statement below...
H AEL introduces the special label "1", which is the beginning context number for most extensions.
AEL Macros

A macro is defined in its own block like this. The arguments to the macro are specified with the
name of the macro. They are then referred to by that same name. A catch block can be specified
to catch special extensions.

A macro is then called by preceding the macro name with an ampersand. Empty arguments can
be passed simply with nothing between comments(0.11).

&st d- ext en(${ EXTEN}, "1 AX2");
_B6XXX => &std-exten(, "IAX2");
_TXXX => &std-exten(${ EXTEN},) ;
_8XXX => &std-exten(,);
}
11>
AEL Loops

AEL has implementations of ‘for' and 'while' loops.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

for (x=0; ${x} < 3; x=%{x} + 1) {
Verbose(x is ${x} !);
}

}
2=> {
y=10;
while (${y} >= 0) {
Verbose(y is ${y} !);
y=${y}-1;

}
11>

NOTE: The conditional expression (the "${y} = 0" above) is wrapped in $[] so it can be
evaluated. NOTE: The for loop test expression (the "$x 3" above) is wrapped in $[] so it can be
evaluated.

AEL Break, Continue, and Return

Three keywords:

1. break
2. continue
3. return

are included in the syntax to provide flow of control to loops, and switches.

The break can be used in switches and loops, to jump to the end of the loop or switch.

The continue can be used in loops (while and for) to immediately jump to the end of the loop. In
the case of a for loop, the increment and test will then be performed. In the case of the while

loop, the continue will jump to the test at the top of the loop.

The return keyword will cause an immediate jump to the end of the context, or macro, and can be
used anywhere.

AEL Examples

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Wait(1);

Answer () ;

TI MEQUT(di gi t) =5;

TI MEQUT(r esponse) =10;
restart:

Backgr ound(denp- congrats);
instructions:

for (x=0; ${x} < 3; x=${x} + 1) {

Backgr ound(denp-instruct);

Wai t Exten();
}
}
2=>{
Backgr ound(deno- nor ei nf o) ;
goto s, instructions;
}
3=>{
LANGUAGE() =fr;
gotos,restart;
}
500 => {
Pl ayback(deno- abouttotry);
Di al (1 AX2/ guest @i sery. di gi um com;
Pl ayback(denp- nogo) ;
goto s, instructions;
}
600 => {
Pl ayback(denp- echot est);
Echo();
Pl ayback(denp- echodone) ;
gotos,instructions;
}
=> {
hangup:
Pl ayback(denp- t hanks) ;
Hangup() ;
}

t => goto#, hangup;
i => Playback(invalid);

}
11>
AEL Semantic Checks

AEL, after parsing, but before compiling, traverses the dialplan tree, and makes several checks:

Macro calls to non-existent macros.

Macro calls to contexts.

Macro calls with argument count not matching the definition.

application call to macro. (missing the '&")

application calls to "Gotolf", "GotolfTime", "while", "endwhile", "Random", and "execlf", will generate a message to consider converting

the call to AEL goto, while, etc. constructs.

goto a label in an empty extension.

® goto a non-existent label, either a within-extension, within-context, or in a different context, or in any included contexts. Will even check
"sister" context references.

® All the checks done on the time values in the dial plan, are done on the time values in the ifTime() and includes times: o the time range

has to have two times separated by a dash; o the times have to be in range of 0 to 24 hours. o The weekdays have to match the internal

list, if they are provided; o the day of the month, if provided, must be in range of 1 to 31; o the month name or names have to match those

in the internal list.

(0.5) If an expression is wrapped in $[...], and the compiler will wrap it again, a warning is issued.

(0.5) If an expression had operators (you know, +,-,,/,issued. Maybe someone forgot to wrap a variable name?*

(0.12) check for duplicate context names.

(0.12) check for abstract contexts that are not included by any context.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® (0.13) Issue a warning if a label is a numeric value.

There are a subset of checks that have been removed until the proposed AAL (Asterisk
Argument Language) is developed and incorporated into Asterisk. These checks will be:

(if the application argument analyzer is working: the presence of the 'j' option is reported as error.

if options are specified, that are not available in an application.

if you specify too many arguments to an application.

a required argument is not present in an application call.

Switch-case using "known" variables that applications set, that does not cover all the possible values. (a "default" case will solve this

problem. Each "unhandled" value is listed.

® a Switch construct is used, which is uses a known variable, and the application that would set that variable is not called in the same
extension. This is a warning only...

® Calls to applications not in the "applist” database (installed in /var/lib/asterisk/applist” on most systems).

® |n an assignment statement, if the assignment is to a function, the function name used is checked to see if it one of the currently known

functions. A warning is issued if it is not.

Differences with the original version of AEL

1. The $[...] expressions have been enhanced to include the ==, , and && operators. These operators are exactly equivalent to the =, , and
& operators, respectively. Why? So the C, Java, C++ hackers feel at home here.

2. Itis more free-form. The newline character means very little, and is pulled out of the white-space only for line numbers in error messages.

3. It generates more error messages - by this | mean that any difference between the input and the grammar are reported, by file, line

number, and column.

4. It checks the contents of $[] expressions (or what will end up being $[] expressions!) for syntax errors. It also does matching

paren/bracket counts.

5. It runs several semantic checks after the parsing is over, but before the compiling begins, see the list above.

6. It handles #include "filepath" directives. - ALMOST anywhere, in fact. You could easily include a file in a context, in an extension, or at the
root level. Files can be included in files that are included in files, down to 50 levels of hierarchy...

. Local Goto's inside Switch statements automatically have the extension of the location of the switch statement appended to them.

. A pretty printer function is available within pbx_ael.so.

. In the utils directory, two standalone programs are supplied for debugging AEL files. One is called "aelparse”, and it reads in the
letc/asterisk/extensions.ael file, and shows the results of syntax and semantic checking on stdout, and also shows the results of
compilation to stdout. The other is "aelparsel”, which uses the original ael compiler to do the same work, reading in
"letc/asterisk/extensions.ael”, using the original 'pbx_ael.so' instead.

10. AEL supports the "jump" statement, and the "pattern” statement in switch constructs. Hopefully these will be documented in the AEL

README.

11. Added the "return" keyword, which will jump to the end of an extension/Macro.

12. Added the ifTime (time rangedays of weekdays of monthmonths) [else] construct, which executes much like an if () statement, but the
decision is based on the current time, and the time spec provided in the ifTime. See the example above. (Note: all the other
time-dependent Applications can be used via ifTime)

13. Added the optional time spec to the contexts in the includes construct. See examples above.

14. You don't have to wrap a single "true" statement in curly braces, as in the original AEL. An "else" is attached to the closest if. As usual, be
careful about nested if statements! When in doubt, use curlies!

15. Added the syntax [regexten] [hint(channel)] to precede an extension declaration. See examples above, under "Extension". The regexten
keyword will cause the priorities in the extension to begin with 2 instead of 1. The hint keyword will cause its arguments to be inserted in
the extension under the hint priority. They are both optional, of course, but the order is fixed at the moment- the regexten must come
before the hint, if they are both present.

16. Empty case/default/pattern statements will “fall thru" as expected. (0.6)

17. Atrailing label in an extension, will automatically have a NoOp() added, to make sure the label exists in the extension on Asterisk. (0.6)

18. (0.9) the semicolon is no longer required after a closing brace! (i.e. "J;" ==="}". You can have them there if you like, but they are not
necessary. Someday they may be rejected as a syntax error, maybe.

19. (0.9) the // comments are not recognized and removed in the spots where expressions are gathered, nor in application call arguments.
You may have to move a comment if you get errors in existing files.

20. (0.10) the random statement has been added. Syntax: random (expr) lucky-statement [else unlucky-statement]. The probability of the
lucky-statement getting executed is expr, which should evaluate to an integer between 0 and 100. If the lucky-statement isn't so lucky this
time around, then the unlucky-statement gets executed, if it is present.

© 00~

AEL Hints and Bugs

The safest way to check for a null strings is to say $["${x}" = "™] The old way would do as shell
scripts often do, and append something on both sides, like this: $[${x}foo = foo]. The trouble
with the old way, is that, if X contains any spaces, then problems occur, usually syntax errors. It is
better practice and safer wrap all such tests with double quotes! Also, there are now some
functions that can be used in a variable reference, ISNULL(), and LEN(), that can be used to test
for an empty string: ${ISNULL(${x})} or $[${LEN(${x})} =0 .

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Assignment vs. Set(). Keep in mind that setting a variable to value can be done two different
ways. If you choose say 'x=y;', keep in mind that AEL will wrap the right-hand-side with $[]. So,
when compiled into extension language format, the end result will be 'Set(x=$[y])". If you don't
want this effect, then say "Set(x=y);" instead.

The Full Power of AEL

A newcomer to Asterisk will look at the above constructs and descriptions, and ask, "Where's the
string manipulation functions?", "Where's all the cool operators that other languages have to
offer?", etc.

The answer is that the rich capabilities of Asterisk are made available through AEL, via:

* Applications: See Asterisk - documentation of application commands

® Functions: Functions were implemented inside ${ .. } variable references, and supply many useful capabilities.

® Expressions: An expression evaluation engine handles items wrapped inside $[...]. This includes some string manipulation facilities,
arithmetic expressions, etc.

® Application Gateway Interface: Asterisk can fork external processes that communicate via pipe. AGI applications can be written in any
language. Very powerful applications can be added this way.

® Variables: Channels of communication have variables associated with them, and asterisk provides some global variables. These can be
manipulated and/or consulted by the above mechanisms.

Asterisk Manager Interface (AMI)

What is the Asterisk Manager Interface, or AMI? Read on...
The Asterisk Manager TCP IP API

The manager is a client/server model over TCP. With the manager interface, you'll be able to
control the PBX, originate calls, check mailbox status, monitor channels and queues as well as
execute Asterisk commands.

AMI is the standard management interface into your Asterisk server. You configure AMI in
manager.conf. By default, AMI is available on TCP port 5038 if you enable it in manager.conf.

AMI receive commands, called "actions". These generate a "response” from Asterisk. Asterisk
will also send "Events" containing various information messages about changes within Asterisk.
Some actions generate an initial response and data in the form list of events. This format is
created to make sure that extensive reports do not block the manager interface fully.

Management users are configured in the configuration file manager.conf and are given
permissions for read and write, where write represents their ability to perform this class of
"action”, and read represents their ability to receive this class of "event".

If you develop AMI applications, treat the headers in Actions, Events and Responses as local to
that particular message. There is no cross-message standardization of headers.

If you develop applications, please try to reuse existing manager headers and their interpretation.
If you are unsure, discuss on the asterisk-dev mailing list.

Manager subscribes to extension status reports from all channels, to be able to generate events

when an extension or device changes state. The level of details in these events may depend on
the channel and device configuration. Please check each channel configuration file for more

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

information. (in sip.conf, check the section on subscriptions and call limits)
AMI Command Syntax

Management communication consists of tags of the form "header: value", terminated with an
empty newline (\r\n) in the style of SMTP, HTTP, and other headers.

The first tag MUST be one of the following:

® Action: An action requested by the CLIENT to the Asterisk SERVER. Only one "Action" may be outstanding at any time.
® Response: A response to an action from the Asterisk SERVER to the CLIENT.
® Event: An event reported by the Asterisk SERVER to the CLIENT

AMI Manager Commands

To see all of the available manager commands, use the "manager show commands" CLI
command.

You can get more information about a manager command with the "manager show command
command" CLI command in Asterisk.

AMI Examples

® Login - Log a user into the manager interface.

® Originate - Originate a call from a channel to an extension.

® Originate - Originate a call from a channel to an extension without waiting for call to complete.

® Redirect with ExtraChannel:
Attempted goal: Have a 'robot' program Redirect both ends of an already-connected call to a meetme room using the ExtraChannel
feature through the management interface.

*Where 680 is an extension that sends you to a MeetMe room.

There are a number of GUI tools that use the manager interface, please search the mailing list
archives and the documentation page on the http://www.asterisk.org web site for more
information.

Ensuring all modules are loaded with AMI
It is possible to connect to the manager interface before all Asterisk modules are loaded. To
ensure that an application does not send AMI actions that might require a module that has not

yet loaded, the application can listen for the FullyBooted manager event. It will be sent upon
connection if all modules have been loaded, or as soon as loading is complete. The event:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.asterisk.org

Device Status Reports with AMI

blank

Some Standard AMI Headers

Account: — Account Code (Status)

AccountCode: — Account Code (cdr_manager)

ACL: <Y | N> — Does ACL exist for object ?

Action: <action> — Request or notification of a particular action
Address-IP: — IPaddress

Address-Port: — IP port number

Agent: <string> — Agent name

AMAflags: — AMA flag (cdr_manager, sippeers)

AnswerTime: — Time of answer (cdr_manager)

Append: <bool> — CDR userfield Append flag

Application: — Application to use

Async: — Whether or not to use fast setup

AuthType: — Authentication type (for login or challenge) "md5"
BillableSeconds: — Billable seconds for call (cdr_manager)

CallerID: — Caller id (name and number in Originate & cdr_manager)
CallerID: — CallerID number Number or "<unknown>" or "unknown" (should change to "<unknown>" in app_queue)
CallerID1: — Channel 1 CallerID (Link event)

CallerlD2: — Channel 2 CallerID (Link event)

CallerIDName: — CallerID name Name or "<unknown>" or "unknown" (should change to "<unknown>" in app_gqueue)
Callgroup: — Call group for peer/user

CallsTaken: <num> — Queue status variable

Cause: <value> — Event change cause - "Expired"

Cause: <value> — Hangupcause (channel.c)

CID-CallingPres: — Caller ID calling presentation

Channel: <channel> — Channel specifier

Channel: <dialstring> — Dialstring in Originate

Channel: <tech/[peer/username]> — Channel in Registry events (SIP, IAX2)
Channel: <tech> — Technology (SIP/IAX2 etc) in Registry events
ChannelType: — Tech: SIP, IAX2, DAHDI, MGCP etc

Channell: — Link channel 1

Channel2: — Link channel 2

ChanObjectType: — "peer", "user"

Codecs: — Codec list

CodecOrder: — Codec order, separated with comma ","

Command: — Cli command to run

Context: — Context

Count: <num> — Number of callers in queue

Data: — Application data

Default-addr-IP: — IP address to use before registration
Default-Username: — Username part of URI to use before registration
Destination: — Destination for call (Dialstring) (dial, cdr_manager)
DestinationContext: — Destination context (cdr_manager)
DestinationChannel: — Destination channel (cdr_manager)
DestUniguelD: — UniquelD of destination (dial event)

Direction: <type> — Audio to mute (read | write | both)

Disposition: — Call disposition (CDR manager)

Domain: <domain> — DNS domain

Duration: <secs> — Duration of call (cdr_manager)

Dynamic: <Y | N> — Device registration supported?

Endtime: — End time stamp of call (cdr_manager)

EventList: <flag> — Flag being "Start", "End", "Cancelled" or "ListObject"
Events: <eventmask> — Eventmask filter ("on", "off", "system", “call", "log")
Exten: — Extension (Redirect command)

Extension: — Extension (Status)

Family: <string> — ASTdb key family

File: <filename> — Filename (monitor)

Format: <format> — Format of sound file (monitor)

From: <time> — Parking time (ParkedCall event)

Hint: — Extension hint

Incominglimit: — SIP Peer incoming limit

Key: Key: — ASTdb Database key

LastApplication: — Last application executed (cdr_manager)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

LastCall: <num> — Last call in queue

LastData: — Data for last application (cdr_manager)

Link: — (Status)

Listitems: <number> — Number of items in Eventlist (Optionally sent in "end" packet)
Location: — Interface (whatever that is -maybe tech/name in app_queue)
Loginchan: — Login channel for agent

Logintime: <number> — Login time for agent

Mailbox: — VM Mailbox (id@vmcontext) (mailboxstatus, mailboxcount)
MD5SecretExist: <Y | N> — Whether secret exists in MD5 format
Membership: <string> — "Dynamic" or "static" member in queue

Message: <text> — Text message in ACKs, errors (explanation)

Mix: <bool> — Boolean parameter (monitor)

MOHSuggest: — Suggested music on hold class for peer (mohsuggest)
NewMessages: <count> — Count of new Mailbox messages (mailboxcount)
Newname:

ObjectName: — Name of object in list

OldName: — Something in Rename (channel.c)

OldMessages: <count> — Count of old mailbox messages (mailboxcount)
Outgoinglimit: — SIP Peer outgoing limit

Paused: <num> — Queue member paused status

Peer: <tech/name> — "channel" specifier

PeerStatus: <tech/name> — Peer status code "Unregistered”, "Registered", "Lagged", "Reachable
Penalty: <num> — Queue penalty

Priority: — Extension priority

Privilege: <privilege> — AMI authorization class (system, call, log, verbose, command, agent, user)
Pickupgroup: — Pickup group for peer

Position: <num> — Position in Queue

Queue: — Queue name

Reason: — "Autologoff"

Reason: — "Chanunavail"

Response: <response> — response code, like "200 OK" "Success", "Error", "Follows"
Restart: — "True", "False"

RegExpire: — SIP registry expire

RegExpiry: — SIP registry expiry

Reason: — Originate reason code

Seconds: — Seconds (Status)

Secret: <password> — Authentication secret (for login)

SecretExist: <Y | N> — Whether secret exists

Shutdown: — "Uncleanly”, "Cleanly"

SIP-Authlnsecure:

SIP-FromDomain: — Peer FromDomain

SIP-FromUser: — Peer FromUser

SIP-NatSupport:

SIPLastMsg:

Source: — Source of call (dial event, cdr_manager)

SrcUniquelD: — UniquelD of source (dial event)

StartTime: — Start time of call (cdr_manager)

State: — Channel state

State: <1 | 0> — Mute flag

Status: — Registration status (Registry events SIP)

Status: — Extension status (Extensionstate)

Status: — Peer status (if monitored) ** Will change name ** "unknown", "lagged", "ok"
Status: <num> — Queue Status

Status: — DND status (DNDState)

Time: <sec> — Roundtrip time (latency)

Timeout: — Parking timeout time

Timeout: — Timeout for call setup (Originate)

Timeout: <seconds> — Timeout for call

Uniqueid: — Channel Unique ID

Uniqueidl: — Channel 1 Unique ID (Link event)

Uniqueid2: — Channel 2 Unique ID (Link event)

User: — Username (SIP registry)

UserField: — CDR userfield (cdr_manager)

Val: — Value to set/read in ASTdb

Variable: — Variable AND value to set (multiple separated with | in Originate)
Variable: <name> — For channel variables

Value: <value> — Value to set

VoiceMailbox: — VM Mailbox in SIPpeers

Waiting: — Count of mailbox messages (mailboxstatus)

. Please try to re-use existing headers to simplify manager message parsing in clients.*

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Read the CODING-GUIDELINES if you develop new manager commands or events.
Asynchronous Javascript Asterisk Manger (AJAM)

AJAM is a new technology which allows web browsers or other HTTP enabled applications and
web pages to directly access the Asterisk Manger Interface (AMI) via HTTP. Setting up your
server to process AJAM involves a few steps:

Setting up the Asterisk HTTP server

Uncomment the line "enabled=yes" in /etc/asterisk/http.conf to enable Asterisk's builtin micro HTTP server.

If you want Asterisk to actually deliver simple HTML pages, CSS, javascript, etc. you should uncomment "enablestatic=yes"

. Adjust your "bindaddr" and "bindport" settings as appropriate for your desired accessibility

. Adjust your "prefix" if appropriate, which must be the beginning of any URI on the server to match. The default is "asterisk" and the rest of
these instructions assume that value.

N

Allow Manager Access via HTTP

1. Make sure you have both "enabled = yes" and "webenabled = yes" setup in /etc/asterisk/manager.conf
2. You may also use "httptimeout" to set a default timeout for HTTP connections.
3. Make sure you have a manager username/secret

Once those configurations are complete you can reload or restart Asterisk and you should be
able to point your web browser to specific URI's which will allow you to access various web
functions. A complete list can be found by typing "http show status" at the Asterisk CLI.
examples:

® http://localhost:8088/asterisk/manager?action=login&username=foo&secret=bar

This logs you into the manager interface's "HTML" view. Once you're logged in, Asterisk stores a
cookie on your browser (valid for the length of httptimeout) which is used to connect to the same
session.

® http://localhost:8088/asterisk/rawman?action=status

Assuming you've already logged into manager, this URI will give you a "raw" manager output for
the "status” command.

® http://localhost:8088/asterisk/mxml?action=status

This will give you the same status view but represented as AJAX data, theoretically compatible
with RICO (http://www.openrico.org).

® http://localhost:8088/asterisk/static/ajamdemo.html

If you have enabled static content support and have done a make install, Asterisk will serve up a
demo page which presents a live, but very basic, "astman" like interface. You can login with your
username/secret for manager and have a basic view of channels as well as transfer and hangup
calls. It's only tested in Firefox, but could probably be made to run in other browsers as well.

A sample library (astman.js) is included to help ease the creation of manager HTML interfaces.

g For the demo, there is no need for any external web server.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://localhost:8088/asterisk/manager?action=login&username=foo&secret=bar
http://localhost:8088/asterisk/rawman?action=status
http://localhost:8088/asterisk/mxml?action=status
http://www.openrico.org
http://localhost:8088/asterisk/static/ajamdemo.html

Integration with other web servers

Asterisk's micro HTTP server is not designed to replace a general purpose web server and it
is intentionally created to provide only the minimal interfaces required. Even without the addition
of an external web server, one can use Asterisk's interfaces to implement screen pops and
similar tools pulling data from other web servers using iframes, div's etc. If you want to integrate
CGl's, databases, PHP, etc. you will likely need to use a more traditional web server like Apache
and link in your Asterisk micro HTTP server with something like this:

ProxyPass /asterisk http://localhost:8088/asterisk
Asterisk Queues

Pardon, but the dialplan in this tutorial will be expressed in AEL, the new Asterisk Extension
Language. If you are not used to its syntax, we hope you will find it to some degree intuitive. If
not, there are documents explaining its syntax and constructs.

Configuring Call Queues

Top-level for configuring call queues

Using queues.conf

First of all, set up call queues in queue.conf
Here is an example:

gueues.conf

In the above, we have defined 3 separate calling queues: sales-general, customerservice, and
dispatch.

Please note that the sales-general queue specifies a context of "sales", and that customerservice
specifies the context of "customerservice", and the dispatch queue specifies the context
"dispatch”. These three contexts must be defined somewhere in your dialplan. We will show
them after the main menu below.

In the [general] section, specifying the persistentmembers=yes, will cause the agent lists to be
stored in astdb, and recalled on startup.

The strategy=ringall will cause all agents to be dialed together, the first to answer is then
assigned the incoming call.

"Jjoinempty" set to "strict" will keep incoming callers from being placed in queues where there are
no agents to take calls. The Queue() application will return, and the dial plan can determine what
to do next.

If there are calls queued, and the last agent logs out, the remaining incoming callers will

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://localhost:8088/asterisk

immediately be removed from the queue, and the Queue() call will return, IF the
"leavewhenempty" is set to "strict".

Routing Incoming Calls to Queues
Then in extensions.ael, you can do these things:

The Main Menu
At Digium, incoming callers are sent to the "mainmenu” context, where they are greeted, and
directed to the numbers they choose...

got o di spatch, s, 1;
2=> gotosales,s,1;
3 => goto custonerservice,s,1;
4 => gotodispatch,s,1;
s => {
Ri ngi ng() ;
Wai t(1);
Set (att enpt s=0) ;
Answer () ;
Wai t(1);
Backgr ound(di gi um’ ThankYouFor Cal | i ngDi gi um ;
Backgr ound(di gi unf Your OpenSour ceTel econmuni cati onsSupplier);
Wai t Exten(0. 3);
repeat:
Set (attenpts=$[${attenpts} + 1]);
Backgr ound(di gi unt | f YouKnowYour Par t ysExt ensi onYouMayDi al | t At AnyTi ne) ;
Wi t Exten(0.1);
Backgr ound(di gi unmf & herwi se) ;
Wi t Exten(0. 1);
Backgr ound(di gi unf For Sal esPl easePress?2);
Wi t Exten(0. 2);
Backgr ound(di gi unf For Cust oner Ser vi cePl easePr ess3);
Wi t Ext en(0. 2);
Backgr ound(di gi unf For Al | O her Depar t ment sPl easePress4) ;
Wi t Exten(0. 2);
Backgr ound(di gi unmf ToSpeakW t hAnQper at or Pl easePr ess0At AnyTi ne) ;
if(${attenpts} < 2) {
Wai t Exten(0. 3);
Backgr ound(di gi unf ToHear TheseOpt i onsRepeat edPl easeHol d) ;
}
Wi t Ext en(5);
if(${attenpts} < 2) gotorepeat;
Backgr ound(di gi um YouHaveMadeNoSel ecti on);
Background(di gi un Thi sCal | W1 | BeEnded) ;
Backgr ound(goodbye) ;
Hangup() ;

}
11>

The Contexts referenced from the queues.conf file

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

got o di spatch, s, 1;
8 => Voi cemai | (${ SALESVM) ;
s => {
Ri ngi ng();
Wai t (2);
Backgr ound(di gi unf ThankYouFor Cont acti ngTheDi gi unfSal esDepart nment) ;
Wi t Exten(0. 3);

Backgr ound(di gi unf Pl easeHol dAndYour Cal | W I | BeAnswer edByQur Next Avai | abl eSal esRepresentati ve);
Wai t Exten(0. 3);
Backgr ound(di gi unf At AnyTi meYouMayPr essOToSpeakW t hAnQper at or Or 8ToLeaveAMessage) ;
Set (CALLERI D(nane) =Sal es) ;
Queue(sal es-general ,t);
Set (CALLERI D(nane) =EnptySal Q ;
got o di spatch, s, 1;
Pl ayback(goodbye) ;
Hangup() ;

}
11>

Please note that there is only one attempt to queue a call in the sales queue. All sales agents
that are logged in will be rung.

Set Cl DNanme(CSVTr ans) ;
got o di spat ch| s| 1;

}

8 => Voi cemai | (${ CUSTSERWM) ;

s => {
Ri ngi ng();
Wai t (2);
Backgr ound(di gi unmf ThankYouFor Cal | i ngDi gi untCust oner Ser vi ce) ;
Wi t Exten(0. 3);
not r acki ng:

Backgr ound(di gi unf Pl easeWi t For TheNext Avai | abl eCust onmer Ser vi ceRepresent ati ve) ;

Wai t Exten(0. 3);
Backgr ound(di gi unf At AnyTi meYouMayPr essOToSpeakW t hAnQper at or Or 8ToLeaveAMessage) ;
Set (CALLERI D(nane) =Cust Svc);
Set (QUEUE_MAX_PENALTY=10) ;
Queue(custonerservice,t);
Set (QUEUE_MAX_PENALTY=0) ;
Queue(custonerservice,t);
Set (CALLERI D(nane) =Enpt yCSVQ) ;
got o di spatch, s, 1;
Backgr ound(di gi unf NoCust orer Ser vi ceRepr esent ati vesAr eAvai | abl eAt Thi sTi me) ;
Backgr ound(di gi unf Pl easeLeaveAMessagel nTheCust oner Ser vi ceVoi ceMai | Box) ;
Voi cemai | (${ CUSTSERVWM) ;
Pl ayback(goodbye) ;
Hangup() ;

}
11>

Note that calls coming into customerservice will first be try to queue calls to those agents with a
QUEUE_MAX_PENALTY of 10, and if none are available, then all agents are rung.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Ringi ng() ;

Wit (2);

Backgr ound(di gi unf ThankYouFor Cal | i ngDi gi un) ;

Wi t Ext en(0. 3);

Backgr ound(di gi uni Your Cal | W | BeAnswer edByQur Next Avai | abl eQperator);
Backgr ound(di gi un Pl easeHol d) ;

Set (QUEUE_MAX_PENALTY=10) ;

Queue(di spatch|t);

Set (QUEUE_MAX_PENALTY=20) ;

Queue(di spatch|t);

Set (QUEUE_MAX_PENALTY=0) ;

Queue(di spatch|t);

Backgr ound(di gi uni NoOnel sAvai | abl eToTakeYour Cal |) ;

Backgr ound(di gi unf Pl easeLeaveAMessagel nQur Gener al Voi ceMai | Box) ;
Voi cenai | (${ Dl SPATCHVM) ;

Pl ayback(goodbye) ;

Hangup() ;

}
11>

And in the dispatch context, first agents of priority 10 are tried, then 20, and if none are available,
all agents are tried.

Notice that a common pattern is followed in each of the three queue contexts:

First, you set QUEUE_MAX_ PENALTY to a value, then you call Queue(queue-name,option,...)
(see the Queue application documetation for details)

In the above, note that the "t" option is specified, and this allows the agent picking up the
incoming call the luxury of transferring the call to other parties.

The purpose of specifying the QUEUE_MAX_PENALTY is to develop a set of priorities amongst
agents. By the above usage, agents with lower number priorities will be given the calls first, and
then, if no-one picks up the call, the QUEUE_MAX_PENALTY will be incremented, and the
queue tried

again. Hopefully, along the line, someone will pick up the call, and the Queue application will end
with a hangup.

The final attempt to queue in most of our examples sets the QUEUE_MAX_ PENALTY to zero,
which means to try all available agents.

Assigning Agents to Queues

In this example dialplan, we want to be able to add and remove agents to handle incoming calls,
as they feel they are available. As they log in, they are added to the queue's agent list, and as
they log out, they are removed. If no agents are available, the queue command will terminate,
and it is the duty of the dialplan to do something appropriate, be it sending the incoming caller to
voicemail, or trying the queue again with a higher QUEUE_MAX_PENALTY.

Because a single agent can make themselves available to more than one queue, the process of
joining multiple queues can be handled automatically by the dialplan.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Agents Log In and Out

{

Answer () ;
Read(AGENT_NUMBER, agent - ent er nunj ;
VMAUt hent i cat e(${ AGENT_NUMBER} @lef aul t, s) ;
Set (queue- announce- success=1);
got o queues- mani p, | ${ AGENT_NUMBER}, 1;

}

6093 => {
Answer () ;
Read(AGENT_NUMBER, agent - ent er nun ;
Set (queue- announce- success=1);
got o queues- mani p, O8{ AGENT_NUMBER}, 1;

}

11>
In the above contexts, the agents dial 6092 to log into their queues, and they dial 6093 to log out
of their queues. The agent is prompted for their agent number, and if they are logging in, their

passcode, and then they are transferred to the proper extension in the queues-manip context.
The queues-manip context does all the actual work:

{
&queue- addr enove(di spat ch, 10, ${ EXTEN}) ;

&queue- success(${ EXTEN}) ;

}

/! Brittanica Spears

_[106165=> {
&queue- addr enove(di spat ch, 20, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Rock Hudson

[106170 => {
&queue- addr enove(sal es-general , 10, ${ EXTEN}) ;
&queue- addr enove(cust oner servi ce, 20, ${ EXTEN}) ;
&queue- addr enove(di spat ch, 30, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Saline Dye-on

_[1g6070=> {
&queue- addr enove(sal es- general , 20, ${ EXTEN}) ;
&queue- addr enove(cust oner servi ce, 30, ${ EXTEN}) ;
&queue- addr enove(di spat ch, 30, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}
11>

In the above extensions, note that the queue-addremove macro is used to actually add or
remove the agent from the applicable queue, with the applicable priority level. Note that agents
with a priority level of 10 will be called before agents with levels of 20 or 30.

In the above example, Raquel will be dialed first in the dispatch queue, if she has logged in. If
she is not, then the second call of Queue() with priority of 20 will dial Brittanica if she is present,

otherwise the third call of Queue() with MAX_PENALTY of O will dial Rock and Saline
simultaneously.

Also note that Rock will be among the first to be called in the sales-general queue, and among

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

the last in the dispatch queue. As you can see in main menu, the callerID is set in the main menu
so they can tell which queue incoming calls are coming from.

The call to queue-success() gives some feedback to the agent as they log in and out, that the
process has completed.

0) {
switch(${exten: 0:1}) {

case | :
Pl ayback(agent - | ogi nok) ;
Hangup() ;
br eak;

case QO
Pl ayback(agent -1 oggedof f);
Hangup() ;
br eak;

}
11>

The queue-addremove macro is defined in this manner:

Basically, it uses the first character of the exten variable, to determine the proper actions to take.
In the above dial plan code, only the cases | or O are used, which correspond to the Login and
Logout actions.

Controlling the way Queues Call Agents

Notice in the above, that the commands to manipulate agents in queues have "@agents" in their
arguments. This is a reference to the agents context:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Set (QUEUE_MAX_PENALTY=10) ;
Queue(sal es-general ,t);
Set (QUEUE_MAX_PENALTY=0) ;
Queue(sal es-general ,t);
Set (CALLERI D(nane) =Enpt ySal Q ;
got o di spatch, s, 1;
}
/1 Customer Service queue
8011 => {
Set (QUEUE_MAX_PENALTY=10) ;
Queue(custonerservice,t);
Set (QUEUE_MAX_PENALTY=0) ;
Queue(custonerservice,t);
Set (CALLERI D(nane) =EMpt yCSVQ) ;
got o di spatch, s, 1;
}
8013 => {
Di al (i ax2/ sweat shop/ 9456@ r om ecst acy) ;
Set (CALLERI D(nane) =Enpt ySupQ) ;
Set (QUEUE_MAX_PENALTY=10) ;
Queue(support-dispatch,t);
Set (QUEUE_MAX_PENALTY=20) ;
Queue(support-dispatch,t);
Set (QUEUE_MAX_PENALTY=0); // means no nax
Queue(support-dispatch,t);
got o di spatch, s, 1;
}
6121 => &cal | agent (${ RAQUEL}, ${ EXTEN}) ;
6165 => &cal | agent (${ SPEARS} , ${ EXTEN}) ;
6170 => &cal | agent (${ ROCK} , ${ EXTEN}) ;
6070 => &cal | agent (${ SALI NE} , ${ EXTEN}) ;
}
11>

In the above, the variables ${RAQUEL}, etc stand for actual devices to ring that person's phone
(like DAHDI/37).

The 8010, 8011, and 8013 extensions are purely for transferring incoming callers to queues. For
instance, a customer service agent might want to transfer the caller to talk to sales. The agent
only has to transfer to extension 8010, in this case.

Here is the callagent macro, note that if a person in the queue is called, but does not answer,
then they are automatically removed from the queue.

In the callagent macro above, the ${exten} will be 6121, or 6165, etc, which is the extension of
the agent.

The use of the GROUP_COUNT, and OUTBOUND_GROUP follow this line of thinking. Incoming
calls can be queued to ring all agents in the current priority. If some of those agents are already
talking, they would get bothersome call-waiting tones. To avoid this inconvenience, when an
agent gets a call, the OUTBOUND_GROUP assigns that conversation to the group specified, for
instance 6171@agents. The ${GROUP_COUNT()} variable on a subsequent call should return
"1" for that group. If GROUP_COUNT returns 1, then the busy() is returned without actually trying
to dial the agent.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Queue Pre-Acknowledgement Messages

If you would like to have a pre acknowledge message with option to reject the message you can
use the following dialplan Macro as a base with the 'M' dial argument.

s, 1, Wi t(.25)
ext en=>s, 2, Read(ACCEPT, scr een-cal | ee-options, 1)

ext en=>s, 3, Got oi f ($[${ ACCEPT} = 1] ?50)
ext en=>s, 4, Got oi f ($[${ ACCEPT} = 2] ?30)
ext en=>s, 5, Cot oi f ($[${ ACCEPT} = 3] ?40)
ext en=>s, 6, Got oi f ($[${ ACCEPT} = 4] ?30: 30)

ext en=>s, 30, Set (MACRO_RESULT=CONTI NUE)

ext en=>s, 40, Read(TEXTEN, cust oni scr een- exten,)

ext en=>s, 41, Got oi f ($[${LEN(${ TEXTEN})} = 3] ?42: 45)

ext en=>s, 42, Set (MACRO RESULT=GOTO from i nt er nal *${ TEXTEN} *1)
ext en=>s, 45, Got oi f ($[${ TEXTEN} = 0] ?46: 4)

ext en=>s, 46, Set (MACRO_RESULT=CONTI NUE)

ext en=>s, 50, Pl ayback(after-the-tone)

ext en=>s, 51, Pl ayback(connect ed)

ext en=>s, 52, Pl ayback(beep)

11>

Queue Caveats

In the above examples, some of the possible error checking has been omitted, to reduce clutter
and make the examples clearer.

Queue Logs

In order to properly manage ACD queues, it is important to be able to keep track of details of call
setups and teardowns in much greater detail than traditional call detail records provide. In order
to support this, extensive and detailed tracing of every queued call is stored in the queue log,
located (by default) in /var/log/asterisk/queue_log.

These are the events (and associated information) in the queue log:

* ABANDON(positionorigpositionwaittime) - The caller abandoned their position in the queue. The position is the caller's position in the
queue when they hungup, the origposition is the original position the caller was when they first entered the queue, and the waittime is
how long the call had been waiting in the queue at the time of disconnect.

® AGENTDUMP - The agent dumped the caller while listening to the queue announcement.

® AGENTLOGIN(channel) - The agent logged in. The channel is recorded.

* AGENTCALLBACKLOGIN(exten@context) - The callback agent logged in. The login extension and context is recorded.

®* AGENTLOGOFF(channellogintime) - The agent logged off. The channel is recorded, along with the total time the agent was logged in.

* AGENTCALLBACKLOGOFF(exten@contextlogintimereason) - The callback agent logged off. The last login extension and context is
recorded, along with the total time the agent was logged in, and the reason for the logoff if it was not a normal logoff (e.g., Autologoff,
Chanunavail)

® COMPLETEAGENT (holdtimecalltimeorigposition) - The caller was connected to an agent, and the call was terminated normally by the
agent. The caller's hold time and the length of the call are both recorded. The caller's original position in the queue is recorded in
origposition.

® COMPLETECALLER(holdtimecalltimeorigposition) - The caller was connected to an agent, and the call was terminated normally by the
caller. The caller's hold time and the length of the call are both recorded. The caller's original position in the queue is recorded in

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

origposition.
® CONFIGRELOAD - The configuration has been reloaded (e.g. with asterisk -rx reload)

® CONNECT (holdtimebridgedchanneluniqueidringtime) - The caller was connected to an agent. Hold time represents the amount of time
the caller was on hold. The bridged channel unique ID contains the unigue ID of the queue member channel that is taking the call. This is
useful when trying to link recording filenames to a particular call in the queue. Ringtime represents the time the queue members phone
was ringing prior to being answered.

® ENTERQUEUE(urlcallerid) - A call has entered the queue. URL (if specified) and Caller*ID are placed in the log.

* EXITEMPTY (positionorigpositionwaittime) - The caller was exited from the queue forcefully because the queue had no reachable
members and it's configured to do that to callers when there are no reachable members. The position is the caller's position in the queue
when they hungup, the origposition is the original position the caller was when they first entered the queue, and the waittime is how long
the call had been waiting in the queue at the time of disconnect.

* EXITWITHKEY (keypositionorigpositionwaittime) - The caller elected to use a menu key to exit the queue. The key and the caller's
position in the queue are recorded. The caller's entry position and amoutn of time waited is also recorded.

* EXITWITHTIMEOUT (positionorigpositionwaittime) - The caller was on hold too long and the timeout expired. The position in the queue
when the timeout occurred, the entry position, and the amount of time waited are logged.

® QUEUESTART - The queueing system has been started for the first time this session.

®* RINGNOANSWER(ringtime) - After trying for ringtime ms to connect to the available queue member, the attempt ended without the
member picking up the call. Bad queue member!

® SYSCOMPAT - A call was answered by an agent, but the call was dropped because the channels were not compatible.

®* TRANSFER(extensioncontextholdtimecalltimeorigposition) - Caller was transferred to a different extension. Context and extension are
recorded. The caller's hold time and the length of the call are both recorded, as is the caller's entry position at the time of the transfer.
PLEASE remember that transfers performed by SIP UA's by way of a reinvite may not always be caught by Asterisk and trigger off this
event. The only way to be 100% sure that you will get this event when a transfer is performed by a queue member is to use the built-in
transfer functionality of Asterisk.

Asterisk Security Framework

Attacks on Voice over IP networks are becoming increasingly more common. It has become
clear that we must do something within Asterisk to help mitigate these attacks.

Through a number of discussions with groups of developers in the Asterisk community, the
general consensus is that the best thing that we can do within Asterisk is to build a framework
which recognizes and reports events that could potentially have security implications. Each
channel driver has a different concept of what is an "event”, and then each administrator has
different thresholds of what is a "bad" event and what is a restorative event. The process of
acting upon this information is left to an external program to correlate and then take action - block
traffic, modify dialing rules, etc. It was decided that embedding actions inside of Asterisk was
inappropriate, as the complexity of construction of such rule sets is difficult and there was no
agreement on where rules should be enabled or how they should be processed. The addition of
a major section of code to handle rule expiration and severity interpretation was significant. As a
final determining factor, there are external programs and services which already parse log files
and act in concert with packet filters or external devices to protect or alter network security
models for IP connected hosts.

Security Framework Overview

This section discusses the architecture of the Asterisk modifications being proposed.
There are two main components that we propose for the initial implementation of the security

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

framework:

® Security Event Generation
® Security Event Logger

Security Event Generation

The ast_event APl is used for the generation of security events. That way, the events are in an
easily interpretable format within Asterisk to make it easy to write modules that do things with
them. There are also some helper data structures and functions to aid Asterisk modules in
reporting these security events with the proper contents.

The next section of this document contains the current list of security events being proposed.
Each security event type has some required pieces of information and some other optional
pieces of information.

Subscribing to security events from within Asterisk can be done by subscribing to events of type
AST_EVENT_SECURITY. These events have an information element,

AST_EVENT _IE_SECURITY_EVENT, which identifies the security event sub-type (from the list
described in the next section). The result of the information elements in the events contain the
required and optional meta data associated with the event sub-type.

Asterisk Security Event Logger

In addition to the infrastructure for generating the events, one module that is a consumer of these
events has been implemented.

Asterisk trunk was recently updated to include support for dynamic logger levels. This
module takes advantage of this functionality to create a custom "security" logger level.
Then, when this module is in use, logger.conf can be configured to put security events
into a file

security_log => security

The content of this file is a well defined and easily interpretable format for external scripts to read
and act upon. The definition for the format of the log file is described later in this chapter.

Security Events to Log

(-) required
(+) optional

Invalid Account ID
(-) Local address fam|y/|P address/port/transport
(-) Renote address fam ly/IP address/port/transport
(-) Service (SIP, AM, |AX2, ...)
(-) System Nane
(+) Modul e
(+) Account |ID (usernane, etc)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

(+) Session ID (CalllD, etc)
(+) Session tinmestanp (required if Session ID present)
(-) Event tinmestanp (sub-second precision)
Fail ed ACL match
-> everything frominvalid account 1D
(+) Nane of ACL (when we have nanmed ACLS)

I nvalid Chal | enge/ Response
-> everything frominvalid account 1D
(-) Challenge
(-) Response
(-) Expected Response
I nval i d Passwor d
-> everything frominvalid account ID

Successful Authentication
-> informational event
-> everything frominvalid account ID

Invalid formatti ng of Request
-> everything frominvalid account ID
-> account | D optiona
(-) Request Type
(+) Request parameters
Session Limt Reached (such as a call limt)
-> everything frominvalid account ID

Menory Limt Reached

-> everything frominvalid account ID
Maxi mum Load Average Reached

-> everything frominvalid account 1D

Request Not Al |l owed
-> everything frominvalid account 1D
(-) Request Type
(+) Request paraneters

Request Not Supported
-> everything frominvalid account 1D
(-) Request Type

Aut henti cati on Met hod Not Al l owed
-> everything frominvalid account ID
(-) Authentication Method attenpted
In dial og message from unexpected host

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

-> everything frominvalid account ID
(-) expected host

Security Log File Format

The beginning of each line in the log file is the same as it is for other logger levels within Asterisk.

[Feb 11 07:57:03] SECURITY[23736] res_security log.c: <...>

The part of the log entry identified by \<...\> is where the security event content resides. The
security event content is a comma separated list of key value pairs. The key is the information
element type, and the value is a quoted string that contains the associated meta data for that
information element. Any embedded quotes within the content are escaped with a backslash.

INFORMATION_ELEMENT_1="IE1 content",INFORMATION_ELEMENT_2="IE2 content"

The following table includes potential information elements and what the associated content
looks like:

® |E: SecurityEvent
Content: This is the security event sub-type.
Values: FailedACL, InvalidAccountID, SessionLimit, MemoryLimit, LoadAverageLimit, RequestNotSupported, RequestNotAllowed,
AuthMethodNotAllowed, ReqBadFormat, UnexpectedAddress, ChallengeResponseFailed, InvalidPassword

® |E: EventVersion
Content: This is a numeric value that indicates when updates are made to the content of the event.
Values: Monotonically increasing integer, starting at 1

® |E: Service
Content: This is the Asterisk service that generated the event.
Values: TEST, SIP, AMI

® |E: Module
Content: This is the Asterisk module that generated the event.
Values: chan_sip

¢ |E: AccountlD
Content: This is a string used to identify the account associated with the event. In most cases, this would be a username.

® |E: SessionID
Content: This is a string used to identify the session associated with the event. The format of the session identifier is specific to the
service. In the case of SIP, this would be the Call-ID.

® |E: SessionTV
Content: The time that the session associated with the SessionID started.
Values: <seconds><microseconds> since epoch

® |E: ACLName
Content: This is a string that identifies which named ACL is associated with this event.

® |E: LocalAddress
Content: This is the local address that was contacted for the related event.
Values: <Address Family>/<Transport>/<Address>/<Port>
Examples: -> IPV4/UDP/192.168.1.1/5060 -> IPV4/TCP/192.168.1.1/5038

® |E: RemoteAddress
Content: This is the remote address associated with the event.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Examples: -> IPV4/UDP/192.168.1.2/5060 -> IPV4/TCP/192.168.1.2/5038

® |E: ExpectedAddress
Content: This is the address that was expected to be the remote address.
Examples: -> IPV4/UDP/192.168.1.2/5060 -> IPV4/TCP/192.168.1.2/5038

* |E: EventTV
Content: This is the timestamp of when the event occurred.
Values: <seconds><microseconds> since epoch

® |E: RequestType
Content: This is a service specific string that represents the invalid request

* |E: RequestParams
Content: This is a service specific string that represents relevant parameters given with a request that was considered invalid.

® |E: AuthMethod
Content: This is a service specific string that represents an authentication method that was used or requested.

® |E: Challenge
Content: This is a service specific string that represents the challenge provided to a user attempting challenge/response authentication.

® |E: Response
Content: This is a service specific string that represents the response received from a user attempting challenge/response authentication.

® |E: ExpectedResponse
Content: This is a service specific string that represents the response that was expected to be received from a user attempting
challenge/response authentication.

Asterisk Sounds Packages

Asterisk utilizes a variety of sound prompts that are available in several file formats and
languages. Multiple languages and formats can be installed on the same system, and Asterisk
will utilize prompts from languages installed, and will automatically pick the least CPU intensive
format that is available on the system (based on codecs in use, in additional to the codec and
format modules installed and available).

In addition to the prompts available with Asterisk, you can create your own sets of prompts and
utilize them as well. This document will tell you how the prompts available for Asterisk are
created so that the prompts you create can be as close and consistent in the quality and volume
levels as those shipped with Asterisk.

Getting the Sounds Tools

The sounds tools are available in the publicly accessible repotools repository. You can check
these tools out with Subversion via the following command:

svn co http://svn.asterisk.org/svn/repotools

The sound tools are available in the subdirectory sound_tools/ which contains the following
directories:

® audiofilter
® makeg722
® scripts

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

About the Sounds Tools

The following sections will describe the sound tools in more detail and explain what they are
used for in the sounds package creation process.

audiofilter

The audiofilter application is used to "tune" the sound files in such a way that they sound good
when being used while in a compressed format. The values in the scripts for creating the sound
files supplied in repotools is essentially a high-pass filter that drops out audio below 100Hz (or
S0).

(There is an ITU specification that states for 8KHz audio that is being compressed frequencies
below a certain threshold should be removed because they make the resulting compressed
audio sound worse than it should.)

The audiofilter application is used by the ‘converter' script located in the scripts subdirectory of
repotools/sound_tools. The values being passed to the audiofilter application is as follows:

audiofilter -n 0.86916 -1.73829 0.86916 -d 1.00000 -1.74152 0.77536

The two options -n and -d are 'numerator' and ‘denominator’. Per the author, Jean-Marc Valin,
"These values are filter coefficients (-n means numerator, -d is denominator) expressed in the
z-transform domain. There represent an elliptic filter that | designed with Octave such that 'the

result sounds good'.

makeg722

The makeg722 application is used by the ‘converters’ script to generate the G.722 sound files
that are shipped with Asterisk. It starts with the RAW sound files and then converts them to
G.722.

scripts

The scripts folder is where all the magic happens. These are the scripts that the Asterisk open
source team use to build the packaged audio files for the various formats that are distributed with
Asterisk.

chkcore - used to check that the contents of core-sounds-lang.txt are in sync
chkextra - same as above, but checks the extra sound files

mkcore - script used to generate the core sounds packages

mkextra - script used to generate the extra sounds packages

mkmoh - script used to generate the music on hold packages

converters - script used to convert the master files to various formats

Call Completion Supplementary Services (CCSS)

Introduction

A new feature for Asterisk 1.8 is Call Completion Supplementary Services. This document aims
to explain the system and how to use it. In addition, this document examines some potential

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

troublesome points which administrators may come across during their deployment of the
feature.

What is CCSS?

Call Completion Supplementary Services (often abbreviated "CCSS" or simply "CC") allow for a
caller to let Asterisk automatically alert him when a called party has become available, given that
a previous call to that party failed for some reason. The two services offered are Call Completion
on Busy Subscriber (CCBS) and Call Completion on No Response (CCNR). To illustrate, let's
say that Alice attempts to call Bob. Bob is currently on a phone call with Carol, though, so Alice
hears a busy signal. In this situation, assuming that Asterisk has been configured to allow for
such activity, Alice would be able to request CCBS. Once Bob has finished his phone call, Alice
will be alerted. Alice can then attempt to call Bob again.

CCSS Glossary

In this document, we will use some terms which may require clarification. Most of these terms are
specific to Asterisk, and are by no means standard.

® CCBS: Call Completion on Busy Subscriber. When a call fails because the recipient's phone is busy, the caller will have the opportunity
to request CCBS. When the recipient's phone is no longer busy, the caller will be alerted. The means by which the caller is alerted is
dependent upon the type of agent used by the caller.

® CCNR: Call Completion on No Response. When a call fails because the recipient does not answer the phone, the caller will have the
opportun- ity to request CCNR. When the recipient's phone becomes busy and then is no longer busy, the caller will be alerted. The
means by which the caller is alerted is dependent upon the type of the agent used by the caller.

® Agent: The agent is the entity within Asterisk that communicates with and acts on behalf of the calling party.
® Monitor: The monitor is the entity within Asterisk that communicates with and monitors the status of the called party.

® Generic Agent: A generic agent is an agent that uses protocol-agnostic methods to communicate with the caller. Generic agents should
only be used for phones, and never should be used for "trunks."

® Generic Monitor: A generic monitor is a monitor that uses protocol- agnostic methods to monitor the status of the called party. Like with
generic agents, generic monitors should only be used for phones.

® Native Agent: The opposite of a generic agent. A native agent uses protocol-specific messages to communicate with the calling party.
Native agents may be used for both phones and trunks, but it must be known ahead of time that the device with which Asterisk is
communica- ting supports the necessary signaling.

* Native Monitor: The opposite of a generic monitor. A native monitor uses protocol-specific messages to subscribe to and receive notifica-
tion of the status of the called party. Native monitors may be used for both phones and trunks, but it must be known ahead of time that
the device with which Asterisk is communicating supports the necessary signaling.

® Offer: An offer of CC refers to the notification received by the caller that he may request CC.

® Request: When the caller decides that he would like to subscribe to CC, he will make a request for CC. Furthermore, the term may refer
to any outstanding requests made by callers.

® Recall: When the caller attempts to call the recipient after being alerted that the recipient is available, this action is referred to as a
"recall.”

The Call Completion Process

The Initial Call

The only requirement for the use of CC is to configure an agent for the caller and a monitor for at

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

least one recipient of the call. This is controlled using the cc_agent_policy for the caller and the
cc_monitor_policy for the recipient. For more information about these configuration settings, see
configs/samples/ccss.conf.sample. If the agent for the caller is set to something other than
"never" and at least one recipient has his monitor set to something other than "never," then CC
will be offered to the caller at the end of the call.

Once the initial call has been hung up, the configured cc_offer_timer for the caller will be started.
If the caller wishes to request CC for the previous call, he must do so before the timer expires.

Requesting CC
Requesting CC is done differently depending on the type of agent the caller is using.

With generic agents, the CallCompletionRequest application must be called in order to request
CC. There are two different ways in which this may be called. It may either be called before the
caller hangs up during the initial call, or the caller may hang up from the initial call and dial an
extension which calls the CallCompletionRequest application. If the second method is used, then
the caller will have until the cc_offer_timer expires to request CC.

With native agents, the method for requesting CC is dependent upon the technology being used,
coupled with the make of equipment. It may be possible to request CC using a programmable
key on a phone or by clicking a button on a console. If you are using equipment which can
natively support CC but do not know the means by which to request it, then contact the
equipment manufacturer for more information.

Cancelling CC

CC may be canceled after it has been requested. The method by which this is accomplished
differs based on the type of agent the calling party uses.

When using a generic agent, the dialplan application CallRequestCancel is used to cancel CC.
When using a native monitor, the method by which CC is cancelled depends on the protocol
used. Likely, this will be done using a button on a phone.

Keep in mind that if CC is cancelled, it cannot be un-cancelled.

Monitoring the Called Party

Once the caller has requested CC, then Asterisk’s job is to monitor the progress of the called
parties. It is at this point that Asterisk allocates the necessary resources to monitor the called
parties.

A generic monitor uses Asterisk's device state subsystem in order to determine when the called
party has become available. For both CCBS and CCNR, Asterisk simply waits for the phone's
state to change to a "not in use" state from a different state. Once this happens, then Asterisk will
consider the called party to be available and will alert the caller.

A native monitor relies on the network to send a protocol-specific message when the called party

has become available. When Asterisk receives such a message, it will consider the called party
to be available and will alert the caller.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Note that since a single caller may dial multiple parties, a monitor is used for each called party. It
is within reason that different called parties will use different types of monitors for the same CC
request.

Alerting the Caller

Once Asterisk has determined that the called party has become available the time comes for
Asterisk to alert the caller that the called party has become available. The method by which this
is done differs based on the type of agent in use.

If a generic agent is used, then Asterisk will originate a call to the calling party. Upon answering
the call, if a callback macro has been configured, then that macro will be executed on the calling
party's channel. After the macro has completed, an outbound call will be issued to the parties
involved in the original call.

If a native agent is used, then Asterisk will send an appropriate notification message to the
calling party to alert it that it may now attempt its recall. How this is presented to the caller is
dependent upon the protocol and equipment that the caller is using. It is possible that the calling
party's phone will ring and a recall will be triggered upon answering the phone, or it may be that
the user has a specific button that he may press to initiate a recall.

If the Caller is unavailable

When the called party has become available, it is possible that when Asterisk attempts to alert
the calling party of the called party's availability, the calling party itself will have become
unavailable. If this is the case, then Asterisk will suspend monitoring of the called party and will
instead monitor the availability of the calling party. The monitoring procedure for the calling party
is the same as is used in the section "Monitoring the Called Party." In other words, the method by
which the calling party is monitored is dependent upon the type of agent used by the caller.

Once Asterisk has determined that the calling party has become available again, Asterisk will
then move back to the process used in the section "Monitoring the Called Party."

The CC recall

The calling party will make its recall to the same extension that was dialed. Asterisk will provide a
channel variable, CC_INTERFACES, to be used as an argument to the Dial application for CC
recalls. It is strongly recommended that you use this channel variable during a CC recall. Listed
are two reasons:

1. The dialplan may be written in such a way that the dialed destintations are dynamically generated. With such a dialplan, it cannot be
guaranteed that the same interfaces will be recalled.

2. For calling destinations with native CC monitors, it may be necessary to dial a special string in order to notify the channel driver that the
number being dialed is actually part of a CC recall.

1 Even if your call gets routed through local channels, the CC_INTERFACES variable will be populated with the appropriate
values for that specific extension.

When the called parties are dialed, it is expected that a called party will answer, since Asterisk
had previously determined that the party was available. However, it is possible that the called
party may choose not to respond to the call, or he could have become busy again. In such a

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

situation, the calling party must re-request CC if he wishes to still be alerted when the calling
party has become available.

Call Completion Info and Tips

® Be aware when using a generic agent that the max_cc_agents configuration parameter is ignored. The main driving reason for this is that
the mechanism for cancelling CC when using a generic agent would become much more potentially confusing to execute. By limiting a
calling party to having a single request, there is only ever a single request to be cancelled, making the process simple.

® Keep in mind that no matter what CC agent type is being used, a CC request can only be made for the latest call issued.

® |f available timers are running on multiple called parties, it is possible that one of the timers may expire before the others do. If such a
situation occurs, then the interface on which the timer expired will cease to be monitored. If, though, one of the other called parties
becomes available before his available timer expires, the called party whose available timer had previously expired will still be included in
the CC_INTERFACES channel variable on the recall.

® |tis strongly recommended that lots of thought is placed into the settings of the CC timers. Our general recommendation is that timers for
phones should be set shorter than those for trunks. The reason for this is that it makes it less likely for a link in the middle of a network to
cause CC to fail.

® CC can potentially be a memory hog if used irresponsibly. The following are recommendations to help curb the amount of resources
required by the CC engine. First, limit the maximum number of CC requests in the system using the cc_max_requests option in
ccss.conf. Second, set the cc_offer_timer low for your callers. Since it is likely that most calls will not result in a CC request, it is a good
idea to set this value to something low so that information for calls does not stick around in memory for long. The final thing that can be
done is to conditionally set the cc_agent_policy to "never" using the CALLCOMPLETION dialplan function. By doing this, no CC
information will be kept around after the call completes.

® ltis possible to request CCNR on answered calls. The reason for this is that it is impossible to know whether a call that is answered has
actually been answered by a person or by something such as voicemail or some other IVR.

® Not all channel drivers have had the ability to set CC config parameters in their configuration files added yet. At the time of this writing
(2009 Oct), only chan_sip has had this ability added, with short-term plans to add this to chan_dahdi as well. It is possible to set CC
configuration parameters for other channel types, though. For these channel types, the setting of the parameters can only be
accomplished using the CALLCOMPLETION dialplan function.

® |tis documented in many places that generic agents and monitors can only be used for phones. In most cases, however, Asterisk has no
way of distinguishing between a phone and a trunk itself. The result is that Asterisk will happily let you violate the advice given and allow
you to set up a trunk with a generic monitor or agent. While this will not cause anything catastrophic to occur, the behavior will most
definitely not be what you want.

® At the time of this writing (2009 Oct), Asterisk is the only known SIP stack to write an implementation of draft-ietf-bliss-call-completion-04.
As a result, it is recommended that for your SIP phones, use a generic agent and monitor. For SIP trunks, you will only be able to use CC
if the other end is terminated by another Asterisk server running version 1.8 or later.

® |f the Dial application is called multiple times by a single extension, CC will only be offered to the caller for the parties called by the first
instantiation of Dial.

® |f a phone forwards a call, then CC may only be requested for the phone that executed the call forward. CC may not be requested for the
phone to which the call was forwarded.

® CC is currently only supported by the Dial application. Queue, Followme, and Page do not support CC because it is not particularly useful
for those applications.

® Generic CC relies heavily on accurate device state reporting. In particular, when using SIP phones it is vital to be sure
that device state is updated properly when using them. In order to facilitate proper device state handling, be sure to set

callcounter=yes for all peers and to set limitonpeers=yes in the general section of sip.conf

® When using SIP CC (i.e. native CC over SIP), it is important that your minexpiry and maxexpiry values allow for available timers to run as
little or as long as they are configured. When an Asterisk server requests call completion over SIP, it sends a SUBSCRIBE message with
an Expires header set to the number of seconds that the available timer should run. If the Asterisk server that receives this SUBSCRIBE
has a maxexpiry set lower than what is in the received Expires header, then the available timer will only run for maxexpiry seconds.

® CC support for ETSI PTP and Q.SIG requires CallerID information to match CC requests with CC offers. For Q.SIG, depending upon the
options negotiated when CC is requested, the CallerID information needs to be callable as well.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® As with all Asterisk components, CC is not perfect. If you should find a bug or wish to enhance the feature, please open an issue on
https://issues.asterisk.org. If writing an enhancement, please be sure to include a patch for the enhancement, or else the issue will be
closed.

Generic Call Completion Example

The following is an incredibly bare-bones example sip.conf and dialplan to show basic usage of
generic call completion. It is likely that if you have a more complex setup, you will need to make
use of items like the CALLCOMPLETION dialplan function or the CC_INTERFACES channel
variable.

First, let's establish a very simple sip.conf to use for this

sip.conf

Now, let's write a simple dialplan

extensions.conf

1000, 1, Di al (SI P/ Mark, 20)

exten => 1000, n, Hangup

exten => 2000, 1, bi al (SI P/ Ri chard, 20)
exten => 2000, n, Hangup

exten => 30, 1, Cal | Conpl eti onRequest
exten => 30, n, Hangup

exten => 31, 1, Cal | Conpl eti onCancel
exten => 31, n, Hangup

11>

Scenario 1: Mark picks up his phone and dials Richard by dialing 2000. Richard is currently on a
call, so Mark hears a busy signal. Mark then hangs up, picks up the phone and dials 30 to call
the CallCompletionRequest application. After some time, Richard finishes his call and hangs up.
Mark is automatically called back by Asterisk. When Mark picks up his phone, Asterisk will dial
extension 2000 for him.

Scenario 2: Richard picks up his phone and dials Mark by dialing 1000. Mark has stepped away
from his desk, and so he is unable to answer the phone within the 20 second dial timeout.
Richard hangs up, picks the phone back up and then dials 30 to request call completion. Mark
gets back to his desk and dials somebody's number. When Mark finishes the call, Asterisk
detects that Mark's phone has had some activity and has become available again and rings
Richard's phone. Once Richard picks up, Asterisk automatically dials exteision 1000 for him.

Scenario 3: Much like scenario 1, Mark calls Richard and Richard is busy. Mark hangs up, picks
the phone back up and then dials 30 to request call completion. After a little while, Mark realizes
he doesn't actually need to talk to Richard, so he dials 31 to cancel call completion. When
Richard becomes free, Mark will not automatically be redialed by Asterisk.

Scenario 4: Richard calls Mark, but Mark is busy. About thirty seconds later, Richard decides
that he should perhaps request call completion. However, since Richard's phone has the default
cc_offer_timer of 20 seconds, he has run out of time to request call completion. He instead must
attempt to dial Mark again manually. If Mark is still busy, Richard can attempt to request call
completion on this second call instead.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://issues.asterisk.org

Scenario 5: Mark calls Richard, and Richard is busy. Mark requests call completion. Richard
does not finish his current call for another 2 hours (7200 seconds). Since Mark has the default
ccbs_available_timer of 4800 seconds set, Mark will not be automatically recalled by Asterisk
when Richard finishes his call.

Scenario 6: Mark calls Richard, and Richard does not respond within the 20 second dial timeout.
Mark requests call completion. Richard does not use his phone again for another 4 hours
(144000 seconds). Since Mark has the default ccnr_available_timer of 7200 seconds set, Mark
will not be automatically recalled by Asterisk when Richard finishes his call.

Call Detail Records (CDR)

Top-level page for all things CDR

CDR Applications

SetAccount - Set account code for billing

SetAMAFlags - Sets AMA flags

NoCDR - Make sure no CDR is saved for a specific call
ResetCDR - Reset CDR

ForkCDR - Save current CDR and start a new CDR for this call
Authenticate - Authenticates and sets the account code
SetCDRUserField - Set CDR user field

AppendCDRUserField - Append data to CDR User field

For more information, use the "core show application application” command. You can set default
account codes and AMA flags for devices in channel configuration files, like sip.conf, iax.conf etc.

CDR Fields

accountcode: What account number to use, (string, 20 characters)

src: Caller*ID number (string, 80 characters)

dst: Destination extension (string, 80 characters)

dcontext: Destination context (string, 80 characters)

clid: Caller*ID with text (80 characters)

channel: Channel used (80 characters)

dstchannel: Destination channel if appropriate (80 characters)

lastapp: Last application if appropriate (80 characters)

lastdata: Last application data (arguments) (80 characters)

start: Start of call (date/time)

answer: Answer of call (date/time)

end: End of call (date/time)

duration: Total time in system, in seconds (integer), from dial to hangup
billsec: Total time call is up, in seconds (integer), from answer to hangup
disposition: What happened to the call: ANSWERED, NO ANSWER, BUSY
amaflags: What flags to use: DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.
user field: A user-defined field, maximum 255 characters

In some cases, uniqueid is appended:

® uniqueid: Unigue Channel Identifier (32 characters) This needs to be enabled in the source code at compile time

1 If you use IAX2 channels for your calls, and allow 'full’ transfers (not media-only transfers), then when the calls is transferred the
server in the middle will no longer be involved in the signaling path, and thus will not generate accurate CDRs for that call. If you
can, use media-only transfers with IAX2 to avoid this problem, or turn off transfers completely (although this can result in a
media latency increase since the media packets have to traverse the middle server(s) in the call).

CDR Variables

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

If the channel has a CDR, that CDR has its own set of variables which can be accessed just like
channel variables. The following builtin variables are available.

${CDR(clid)} Caller ID

${CDR(src)} Source

${CDR(dst)} Destination

${CDR(dcontext)} Destination context

${CDR(channel)} Channel name

${CDR(dstchannel)} Destination channel

${CDR(lastapp)} Last app executed

${CDR(lastdata)} Last app's arguments

${CDR(start)} Time the call started.

${CDR(answer)} Time the call was answered.
${CDR(end)} Time the call ended.

${CDR(duration)} Duration of the call.

${CDR(billsec)} Duration of the call once it was answered.
${CDR(disposition)} ANSWERED, NO ANSWER, BUSY
${CDR(amaflags)} DOCUMENTATION, BILL, IGNORE etc
${CDR(accountcode)} The channel's account code.
${CDR(uniqueid)} The channel's unique id.
${CDR(userfield)} The channels uses specified field.

In addition, you can set your own extra variables by using Set(CDR(name)=value). These
variables can be output into a text-format CDR by using the cdr_custom CDR driver; see the
cdr_custom.conf.sample file in the configs directory for an example of how to do this.

CDR Storage Backends

Top-level page for information about storage backends for Asterisk’'s CDR engine.

MSSQL CDR Backend

sterisk can currently store CDRs into an MSSQL database in two different ways: cdr_odbc or
cdr_tds

Call Data Records can be stored using unixODBC (which requires the FreeTDS package)

[cdr_odbc] or directly by using just the FreeTDS package [cdr_tds] The following provide some
examples known to get asterisk working with mssq|l.

! Only choose one db connector.

ODBC using cdr_odbc
Compile, configure, and install the latest unixODBC package:

tar -zxvf uni xODBC-2.2.9.tar.gz && cd uni xODBC-2.2.9 && ./configure
--sysconfdir=/etc --prefix=/usr --disable-gui && nmake && make

i nstall

Compile, configure, and install the latest FreeTDS package:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

tar -zxvf freetds-0.62.4.tar.gz && cd freetds-0.62.4 && ./configure
--prefix=/usr --with-tdsver=7.0 \ --wth-uni xodbc=/usr/lib & make
&& make install

Compile, or recompile, asterisk so that it will now add support for cdr_odbc.

make clean && ./configure --wth-odbc &% make update && nmake && nake
i nstall

Setup odbc configuration files.

These are working examples from my system. You will need to modify for your setup. You are
not required to store usernames or passwords here.

/etc/odbcinst.ini

[Fr eeTDS]

Description = FreeTDS ODBC driver for MSSQL
Driver = /usr/lib/libtdsodbc. so

Setup = /usr/lib/libtdsS. so

Fil eUsage = 1

/etc/odbc.ini

[MBSQL- ast eri sk]

description = Asteri sk ODBC for MSSQL
driver = FreeTDS

server = 192.168.1.25

port = 1433

dat abase = voi pdb

tds version = 7.0

| anguage = us_engli sh

@ Only install one database connector. Do not confuse asterisk by using both ODBC (cdr_odbc) and FreeTDS (cdr_tds). This
command will erase the contents of cdr_tds.conf

[-f /etc/asterisk/cdr_tds.conf] > /etc/asterisk/cdr_tds. conf

! unixODBC requires the freeTDS package, but asterisk does not call freeTDS directly.

Now set up cdr_odbc configuration files.

These are working samples from my system. You will need to modify for your setup. Define your

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

usernames and passwords here, secure file as well.

letc/asterisk/cdr_odbc.conf

[gl obal]
dsn=MSSQL- ast eri sk
user nanme=voi pdbuser
passwor d=voi pdbpass
| oguni quei d=yes

And finally, create the 'cdr' table in your mssql database.

CREATE TABLE cdr (
[calldate] [datetinme] NOT NULL ,
[clid] [varchar] (80) NOT NULL ,
[src] [varchar] (80) NOT NULL |,
[dst] [varchar] (80) NOT NULL |,
[dcontext] [varchar] (80) NOT NULL ,
[channel] [varchar] (80) NOT NULL |,
[dstchannel] [varchar] (80) NOT NULL ,
[lastapp] [varchar] (80) NOT NULL ,
[lastdata] [varchar] (80) NOT NULL |,
[duration] [int] NOT NULL ,
[billsec] [int] NOT NULL |,
[di sposition] [varchar] (45) NOT NULL ,
[amaflags] [int] NOT NULL ,
[account code] [varchar] (20) NOT NULL ,
[uni quei d] [varchar] (150) NOT NULL ,
[userfield] [varchar] (255) NOT NULL

)

Start asterisk in verbose mode.

You should see that asterisk logs a connection to the database and will now record every call to
the database when it's complete.

TDS, using cdr_tds

Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz && cd freetds-0.62.4 && ./configure
--prefix=/usr --with-tdsver=7.0 make && meke install

Compile, or recompile, asterisk so that it will now add support for cdr_tds.

make clean && ./configure --with-tds &% nmake update && nake && make
i nstall

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Only install one database connector. Do not confuse asterisk by using both ODBC (cdr_odbc) and FreeTDS (cdr_tds). This
command will erase the contents of cdr_odbc.conf

[-f /etc/asterisk/cdr_odbc.conf] > /etc/asterisk/cdr_odbc. conf

Setup cdr_tds configuration files.

These are working samples from my system. You will need to modify for your setup. Define your
usernames and passwords here, secure file as well.

/etc/asterisk/cdr_tds.conf [global] hostnane=192. 168. 1. 25 port=1433
dbnanme=voi pdb user =voi pdbuser password=voi pdpass charset =Bl G5

And finally, create the 'cdr' table in your mssql database.

CREATE TABLE cdr (
[account code] [varchar] (20) NULL
[src] [varchar] (80) NULL ,
[dst] [varchar] (80) NULL
[dcontext] [varchar] (80) NULL
[clid] [varchar] (80) NULL ,
[channel] [varchar] (80) NULL
[dstchannel] [varchar] (80) NULL ,
[lastapp] [varchar] (80) NULL
[lastdata] [varchar] (80) NULL
[start] [datetine] NULL
[answer] [datetime] NULL ,
[end] [datetinme] NULL ,
[duration] [int] NULL ,
[billsec] [int] NULL ,
[di sposition] [varchar] (20) NULL
[amaf |l ags] [varchar] (16) NULL ,
[uni queid] [varchar] (150) NULL
[userfield] [varchar] (256) NULL

)

Start asterisk in verbose mode.

You should see that asterisk logs a connection to the database and will now record every call to
the database when it's complete.

MySQL CDR Backend
OoDBC

Using MySQL for CDR records is supported by using ODBC and the cdr_odbc module.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Native
Alternatively, there is a native MySQL CDR module.

To use it, configure the module in cdr_mysql.conf. Create a table called cdr under the database
name you will be using the following schema.

CREATE TABLE cdr (
call date datetime NOT NULL default '0000-00-00 00: 00: 00",
clid varchar(80) NOT NULL default ',
src varchar(80) NOT NULL default "',
dst varchar(80) NOT NULL default "',
dcontext varchar(80) NOT NULL default '',
channel varchar(80) NOT NULL default "',
dst channel varchar(80) NOT NULL default "',
| astapp varchar(80) NOT NULL default "',
| astdata varchar (80) NOT NULL default "',
duration int(11) NOT NULL default 'O0',
billsec int(11) NOT NULL default 'O,
di sposition varchar(45) NOT NULL default '',
amafl ags int(11) NOT NULL default 'O,
account code varchar (20) NOT NULL default '',
uni quei d varchar(32) NOT NULL default "',
userfield varchar(255) NOT NULL default "'

);
PostgreSQL CDR Backend
If you want to go directly to postgresgl database, and have the cdr_pgsqgl.so compiled you can
use the following sample setup. On Debian, before compiling asterisk, just install libpgxx-dev.
Other distros will likely have a similiar package.
Once you have the compile done, copy the sample cdr_pgsql.conf file or create your own.

Here is a sample:

letc/asterisk/cdr_pgsql.conf

Now create a table in postgresql for your cdrs

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CREATE TABLE cdr (
cal l date tinmestanp NOT NULL |,
clid varchar (80) NOT NULL ,
src varchar (80) NOT NULL ,
dst varchar (80) NOT NULL |,
dcontext varchar (80) NOT NULL ,
channel varchar (80) NOT NULL ,
dst channel varchar (80) NOT NULL ,
| astapp varchar (80) NOT NULL |,
| astdata varchar (80) NOT NULL ,
duration int NOT NULL ,
billsec int NOT NULL ,
di sposition varchar (45) NOT NULL ,
amafl ags int NOT NULL ,
account code varchar (20) NOT NULL |,
uni quei d varchar (150) NOT NULL |,
userfield varchar (255) NOT' NULL

);
SQLite 2 CDR Backend
SQLite version 2 is supported in cdr_sqlite.
SQLite 3 CDR Backend

SQLite version 3 is supported in cdr_sqlite3_custom.

RADIUS CDR Backend

What is needed

®* FreeRADIUS server
® Radiusclient-ng library
® Asterisk PBX

Installation of the Radiusclient library

Download the sources
From http://developer.berlios.de/projects/radiusclient-ng/

Untar the source tarball:

root @ ocal host:/usr/local/src# tar xvfz radiusclient-ng-0.5.2.tar.gz

Compile and install the library:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://developer.berlios.de/projects/radiusclient-ng/

root @ ocal host:/usr/local/src# cd radiusclient-ng-0.5.2

root @ocal host:/usr/local/src/radiusclient-ng-0.5.2#./configure
root @ ocal host:/usr/local /src/radiusclient-ng-0.5.2# nmake

root @ ocal host:/usr/local/src/radiusclient-ng-0.5.2# nake install

Configuration of the Radiusclient library

By default all the configuration files of the radiusclient library will be in
lusr/local/etc/radiusclient-ng directory.

File "radiusclient.conf" Open the file and find lines containing the following:

aut hserver | ocal host

This is the hostname or IP address of the RADIUS server used for authentication. You will have
to change this unless the server is running on the same host as your Asterisk PBX.

acctserver | ocal host

This is the hostname or IP address of the RADIUS server used for accounting. You will have to
change this unless the server is running on the same host as your Asterisk PBX.

File "servers"

RADIUS protocol uses simple access control mechanism based on shared secrets that allows
RADIUS servers to limit access from RADIUS clients.

A RADIUS server is configured with a secret string and only RADIUS clients that have the same
secret will be accepted.

You need to configure a shared secret for each server you have configured in radiusclient.conf
file in the previous step. The shared secrets are stored in /usr/local/etc/radiusclient-ng/servers
file.

Each line contains hostname of a RADIUS server and shared secret used in communication with

that server. The two values are separated by white spaces. Configure shared secrets for every
RADIUS server you are going to use.

File "dictionary"

Asterisk uses some attributes that are not included in the dictionary of radiusclient library,
therefore it is necessary to add them. A file called dictionary.digium (kept in the contrib dir) was
created to list all new attributes used by Asterisk. Add to the end of the main dictionary

file /usr/local/etc/radiusclient-ng/dictionary the line:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

$I NCLUDE / pat h/to/ di ctionary. di gi um

Install FreeRADIUS Server (Version 1.1.1)

Download sources tarball from:
http://freeradius.org/

Untar, configure, build, and install the server:

root @ ocal host:/usr/local/src# tar xvfz freeradius-1.1.1.tar.gz
root @ocal host:/usr/local/src# cd freeradius-1.1.1

root @ocal host"/usr/local/src/freeradius-1.1.1# ./configure
root @ocal host"/usr/local/src/freeradius-1.1. 1# nake

root @ocal host"/usr/local/src/freeradius-1.1.1# nmake install

All the configuration files of FreeRADIUS server will be in /usr/local/etc/raddb directory.
Configuration of the FreeRADIUS Server

There are several files that have to be modified to configure the RADIUS server. These are
presented next.

File "clients.conf"
File /usr/local/etc/raddb/clients.conf contains description of RADIUS clients that are allowed to
use the server. For each of the clients you need to specify its hostname or IP address and also a

shared secret. The shared secret must be the same string you configured in radiusclient library.

Example:

client nmyhost { secret = nysecret shortnane = foo }

This fragment allows access from RADIUS clients on "myhost” if they use "mysecret” as the
shared secret. The file already contains an entry for localhost (127.0.0.1), so if you are running
the RADIUS server on the same host as your Asterisk server, then modify the existing entry
instead, replacing the default password.

File "dictionary”

5 As of version 1.1.2, the dictionary.digium file ships with FreeRADIUS.

The following procedure brings the dictionary.digium file to previous versions of FreeRADIUS.

File /usr/local/etc/raddb/dictionary contains the dictionary of FreeRADIUS server. You have to
add the same dictionary file (dictionary.digium), which you added to the dictionary of

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://freeradius.org/

radiusclient-ng library. You can include it into the main file, adding the following line at the end of
file /usr/local/etc/raddb/dictionary:

$I NCLUDE / pat h/to/ dictionary. digium

That will include the same new attribute definitions that are used in radiusclient-ng library so the
client and server will understand each other.

Asterisk Accounting Configuration

Compilation and installation:

The module will be compiled as long as the radiusclient-ng library has been detected on your
system.

By default FreeRADIUS server will log all accounting requests into
lusr/local/var/log/radius/radacct directory in form of plain text files. The server will create one file
for each hostname in the directory. The following example shows how the log files look like.

Asterisk now generates Call Detail Records. See /include/asterisk/cdr.h for all the fields which
are recorded. By default, records in comma separated values will be created in
Ivar/log/asterisk/cdr-csv.

The configuration file for cdr_radius.so module is /etc/asterisk/cdr.conf

This is where you can set CDR related parameters as well as the path to the radiusclient-ng
library configuration file.

Logged Values

"Asterisk-Acc-Code", The account name of detail records

"Asterisk-Src",

"Asterisk-Dst",

"Asterisk-Dst-Ctx", The destination context

"Asterisk-Clid",

"Asterisk-Chan", The channel

"Asterisk-Dst-Chan", (if applicable)

"Asterisk-Last-App", Last application run on the channel

"Asterisk-Last-Data", Argument to the last channel

"Asterisk-Start-Time",

"Asterisk-Answer-Time",

"Asterisk-End-Time",

"Asterisk-Duration”, Duration is the whole length that the entire call lasted. ie. call rx'd to hangup "end time" minus "start time"
"Asterisk-Bill-Sec", The duration that a call was up after other end answered which will be <= to duration "end time" minus "answer time"
"Asterisk-Disposition”, ANSWERED, NO ANSWER, BUSY

"Asterisk-AMA-Flags", DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.
"Asterisk-Unique-ID", Unique call identifier

"Asterisk-User-Field" User field set via SetCDRUserField

Calling using Google
Prerequisites
Asterisk communicates with Google using the chan_gtalk Channel Driver and the res_jabber

Resource module. Before proceeding, please ensure that both are compiled and part of your
installation. Compilation of res_jabber and chan_gtalk for use with Google Talk / Voice are

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

dependant on the iksemel library files as well as the OpenSSL development libraries presence
on your system.

Calling using Google Voice of via the Google Mail client requires the use of Asterisk 1.8.1.1 or
greater. The 1.6.x versions of Asterisk only support calls made using the legacy GoogleTalk
external client.

For basic calling between Google Gmail Chat clients, you need a Google Mail account.
For calling to and from the PSTN, you will need a Google Voice account.

In your Google account, you'll want to change the Chat setting from the default of "Automatically
allow people that | communicate with often to chat with me and see when I'm online" to the
second option of "Only allow people that I've explicitly approved to chat with me and see when
I'm online.”

IPVv6 is currently not supported. Use of IPv4 is required.
Google Voice can now be used with Google Apps accounts.
Gtalk configuration

The chan_gtalk Channel Driver is configured with the gtalk.conf configuration file, typically
located in /etc/asterisk. What follows is the minimum required configuration for successful
operation.

Minimum Gtalk Configuration

[general]

cont ext =l ocal

al | owguest s=yes

bi ndaddr =0.0.0.0

ext er ni p=216. 208. 246. 1

[guest]

di sal | ow=al |

al | onw=ul aw
cont ext =l ocal
connecti on=ast eri sk

This general section of this configuration specifies several items.

. That calls will terminate to or originate from the local context; context=local

. That guest calls are allowd; allowguests=yes

. That RTP sessions will be bound to a local address (an IPv4 address must be present); bindaddr=0.0.0.0
. (optional) That your external (the one outside of your NAT) IP address is defined; externip=216.208.246.1

A WNBE

The guest section of this configuration specifies several items.

1. That no codecs are allowed; disallow=all
2. That the ulaw codec is explicitly allowed; allow=ulaw

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

3. That calls received by the guest user will be terminated into the local context; context=local
4. That the Jabber connection used for guest calls is called "asterisk;" connection=asterisk

Jabber Configuration

The res_jabber Resource is configured with the jabber.conf configuration file, typically located in
letc/asterisk. What follows is the minimum required configuration for successful operation.

Minimum Jabber Configuration

[general]
aut or egi st er=yes

[asteri sk]

type=cli ent

server host =t al k. googl e. com

user name=your _googl e_user nane@nai | . coni Tal k
secr et =your _googl e_password

port =5222

uset | s=yes

usesasl| =yes

st at usnessage="1 am an Asterisk Server"

ti meout =100

The general section of this configuration specifies several items.

1. Debug mode is enabled, so that XMPP messages can be seen on the Asterisk CLI; debug=yes
2. Automated buddy pruning is disabled, otherwise buddies will be automatically removed from your list; autoprune=no
3. Automated registration of users from the buddy list is enabled; autoregister=yes

The asterisk section of this configuration specifies several items.

. The type is set to client, as we're connecting to Google as a service; type=client

. The serverhost is Google's talk server; serverhost=talk.google.com

. Our username is configured as your_google_username@gmail.com/resource, where our resource is "Talk;"
username=your_google_username@gmail.com/Talk

. Our password is configured using the secret option; secret=your_google_password

. Google's talk service operates on port 5222; port=5222

. TLS encryption is required by Google; usetls=yes

. Simple Authentication and Security Layer (SASL) is used by Google; usesasl=yes

We set a status message so other Google chat users can see that we're an Asterisk server; statusmessage="l am an Asterisk Server"

. We set a timeout for receiving message from Google that allows for plenty of time in the event of network delay; timeout=100

wWN

©o~No U N

Phone configuration

Now, let's place a phone into the same context as the Google calls. The configuration of a SIP
device for this purpose would, in sip.conf, typically located in /etc/asterisk, look something like:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[mal col nj

t ype=peer
secret=ny_secure_password
host =dynami c

cont ext =l ocal

Dialplan configuration

Incoming calls

Next, let's configure our dialplan to receive an incoming call from Google and route it to the SIP
phone we created. To do this, our dialplan, extensions.conf, typically located in /etc/asterisk,
would look like:

exten => s, 1, Answer ()

exten => s, n, Wi t(2)

exten => s, n, SendDTMF(1)

exten => s, n, D al (SI P/ mal col m 20)

This example uses the "s" unmatched extension, because Google does not forward any DID
when it sends the call to Asterisk.

In this example, we're Answering the call, Waiting 2 seconds, sending the DTMF "1" back to
Google, and then dialing the call.

We do this, because inbound calls from Google enable, even if it's disabled in your Google Voice
control panel, call screening.

Without this SendDTMF event, you'll have to confirm with Google whether or not you want to
answer the call.

@ Another method for accomplishing the sending of the DTMF event is to use the D dial option. The D option tells Asterisk to send
a specified DTMF string after the called party has answered. DTMF events specified before a colon are sent to the called party.
DTMF events specified after a colon are sent to the calling party.

In this example then, one does not need to actually answer the call first. This means
that if the called party doesn't answer, Google will resort to sending the call to one's
Google Voice voicemail box, instead of leaving it at Asterisk.

s,1,D al (SI P/ mal col m 20, D(: 1))

11>

Outgoing calls

Outgoing calls to Google Talk users take the form of:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => 100, 1, Di al (gt al k/ ast eri sk/ mybuddy@mei | . com

Where the technology is "gtalk," the dialing peer is "asterisk" as defined in jabber.conf, and the
dial string is the Google account name.

Outgoing calls made to Google Voice take the form of:

exten =>
CIXXXXXXXXXX, 1, Di al (gt al k/ asteri sk/ +${ EXTEN} @ oi ce. googl e. con)

Where the technology is "gtalk,” the dialing peer is "asterisk" as defined in jabber.conf, and the
dial string is a full E.164 number (plus character followed by country code, followed by the rest of
the digits).

Interactive Voice and Text Response (IVTR)

Because the Google Talk web client provides both audio and text interface, you can use it to
provide a text-based way of traversing Interactive Voice Response (IVR) menus. This is
necessary since the client does not have any DTMF inputs.

In the following dialplan example, we will answer the call, wait a bit, send some text that will show
up in the caller's Google Talk client, play back a prompt, capture the caller's text-based
response, and then dial the appropriate SIP device.

s, 1, Answer ()

exten => s, n, SendText ("If you know the extension of the party you wish to reach, dial it now")
exten => s, n, Background(i f-u-know ext-di al)

exten => s, n, Set (OPTI ON=${ JABBER_RECEI VE(ast eri sk, ${ CALLERI D(nan®e) : : 15}, 5) })

exten => s, n, Di al (S| P/ ${ OPTI O\}, 20)

11>

Note that with the JABBER_RECEIVE function, we're receiving the text from asterisk which we
defined earlier in this page as our connection to Google. We're also specifying with
${CALLERID(name):: 15} that we want to strip off the last 15 characters from the CallerID name
string - which is the number of characters that Google is appending, as of this writing, to
represent an internal call ID number, and that we want to wait 5 seconds for a response.

Channel Event Logging (CEL)

Top-level page for all things CEL

CEL Design Goals

CEL, or Channel Event Logging, has been written with the hopes that it will help solve some of
the problems that were difficult to address in CDR records. Some difficulties in CDR generation
are the fact that the CDR record stores three events: the "Start" time, the "Answer" time, and the

"End" time. Billing time is usually the difference between "Answer" and "End", and total call
duration was the difference in time from "Start" to "End". The trouble with this direct and simple

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

approach is the fact that calls can be transferred, put on hold, conferenced, forwarded, etc. In
general, those doing billing applications in Asterisk find they have to do all sorts of very creative
things to overcome the shortcomings of CDR records, often supplementing the CDR records with
AGI scripts and manager event filters.

The fundamental assumption is that the Channel is the fundamental communication object in
asterisk, which basically provides a communication channel between two communication ports. It
makes sense to have an event system aimed at recording important events on channels. Each
event is attached to a channel, like ANSWER or HANGUP. Some events are meant to connect
two or more channels, like the BRIDGE_START event. Some events, like BLINDTRANSFER,
are initiated by one channel, but affect two others. These events use the Peer field, like BRIDGE
would, to point to the target channel.

The design philosophy of CEL is to generate event data that can grouped together to form a
billing record. This may not be a simple task, but we hope to provide a few different examples
that could be used as a basis for those involved in this effort.

There are definite parallels between Manager events and CEL events, but there are some
differences. Some events that are generated by CEL are not generated by the Manager interface
(yet). CEL is optimized for databases, and Manager events are not. The focus of CEL is billing.
The Manager interface is targeted to real-time monitoring and control of asterisk.

To give the reader a feel for the complexities involved in billing, please take note of the following
sequence of events:

Remember that 150, 151, and 152 are all Zap extension numbers, and their respective devices
are Zap/50, Zap/51, and Zap/52.

152 dials 151; 151 answers. 152 parks 151; 152 hangs up. 150 picks up the park (dials 701). 150
and 151 converse. 151 flashes hook; dials 152, talks to 152, then 151 flashes hook again for
3-way conference. 151 converses with the other two for a while, then hangs up. 150 and 152
keep conversing, then hang up. 150 hangs up first.(not that it matters).

This sequence of actions will generate the following annotated list of 42 CEL events:

Note that the actual CEL events below are in CSV format and do not include the ;;; and text after
that which gives a description of what the event represents.

"EV_CHAN_START", "2007- 05-0

12: 46: 16", "f xs. 52", "152", """ """ """ "s" "extension","Zap/52-1","","", "X
7, 152 takes the phone off-hook

"EV_APP_START", "2007- 05- 09

12: 46: 18", "fxs. 52", "152","152","","", "151", "extensi on", " Zap/ 52-1","Di ¢
;75 152 finishes dialing 151

"EV_CHAN_START", "2007- 05- 09

12: 46: 18", "f xs. 51", "151","", """, "", "s", "extensi on", " Zap/ 51-1","", """, "IX
;73 151 channel created, starts ringing

(151 is ringing)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

"EV_ANSVER', "2007- 05- 09
12: 46: 19","", " 151", "152", """ "" "151", "extensi on", " Zap/ 51- 1", " AppDi al "
Li ne)", " DOCUMENTATI ON', "","1178736378.4","","" ;;; 151 answers
"EV_ANSVER', "2007- 05- 09

12: 46: 19", "fxs. 52", " 152", "152","" """ "151", "extensi on", "Zap/ 52-1","Di ¢
;7 So does 152 (???)

"EV_BRI DGE_START", "2007- 05- 09

12: 46: 20", "fxs. 52", " 152", "152","" """ "151", "extensi on", "Zap/ 52-1","Di ¢
;73 152 and 151 are bridged

(151 and 152 are conversing)

"EV_BRI DGE_END', "2007- 05- 09

12: 46: 25", "fxs. 52", " 152", " 152", """ "" "151", "extensi on", "Zap/ 52-1","Di ¢
;;, after 5 seconds, the bridge ends (152 dials #7007?)

"EV_BRI DGE_START", "2007- 05- 09

12: 46: 25", "fxs. 52", " 152", "152","" """ "151", "extensi on", "Zap/ 52-1","Di ¢
;;; extraneous 0-second bridge?

"EV_BRI DGE_END', "2007- 05- 09

12: 46: 25", "f xs. 52", "152","152","", """, "151", "extensi on", " Zap/ 52- 1", " Di

[ah}

"EV_PARK_START", "2007- 05- 09

12: 46: 27" ,"","151", "1652", """, """, "" "extension","Zap/51-1", " Parked

Cal I ","", " DOCUMENTATI ON', "","1178736378.4","","" ;;; 151 is parked
"EV_HANGUP", " 2007- 05- 09

12: 46: 29", "fxs. 52", " 152", "152","","","h", "extensi on", " Zap/ 52-1","","",
Tty sy 152 hangs up 2 sec later

"EV_CHAN_END', "2007- 05- 09

12: 46: 29", "fxs. 52", " 152", "152","","","h", "extensi on", " Zap/ 52-1","","",
7, 152's channel goes away

(151 is parked and listening to MOH now, 150 picks up, and dials

701)

"EV_CHAN_START", "2007- 05- 09

12:47: 08", "fxs. 50", "150","","","", "s", "extensi on", " Zap/ 50- 1", """, """, " IX
;57 150 picks up the phone, dials 701

"EV_PARK_END', "2007- 05- 09

12: 47:11","","151","152", """, """, "", K "extensi on", "Zap/51-1", " Par ked
CalI","", " DOCUMENTATI ON',"","1178736378.4","","" ;;; 151's park

comes to end

"EV_ANSVER', "2007- 05- 09

12:47:11","fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
75, 150 gets answer (tw ce)

"EV_ANSVER', "2007- 05- 09

12: 47:12","fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
"EV_BRI DGE_START", "2007- 05- 09

12: 47:12","fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
;;; bridge begins between 150 and recently parked 151 (150 and 151

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

are conversing, then 151 hits flash)

"EV_CHAN_START", "2007- 05- 09

12: 47: 51", "fxs. 51", "151","", """, "", "s", "extensi on", " Zap/ 51-2","","", "X
;75 39 seconds later, 51-2 channel is created. (151 fl ashes hook)
"EV_HOOKFLASH', " 2007- 05- 09

12: 47:51","","151", "162", """, """, "", K "extension", "Zap/ 51-1", "Bri dged

Cal I ", " Zap/ 50- 1", " DOCUMENTATI ON', " ", "1178736378. 4" ,"", " Zap/ 51- 2" ;;

a marker to record that 151 flashed the hook

"EV_BRI DGE_END", "2007- 05- 09

12: 47: 51", "fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
7, bridge ends between 150 and 151

"EV_BRI DGE_START", "2007- 05- 09

12: 47: 51", "fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
;;; 0O-second bridge from 150 to ? 150 gets no sound at all

"EV_BRI DGE_END", "2007- 05- 09

12: 47: 51", "fxs. 50", "150", " 150", "","", " 701", "ext ensi on", " Zap/ 50- 1", " Par
"EV_BRI DGE_START", "2007- 05- 09

12: 47: 51", "fxs. 50", "150", " 150", "","", " 701", "ext ensi on", " Zap/ 50- 1", " Par
7, bridge start on 150

(151 has dialtone after hitting flash; dials 152)
"EV_APP_START", "2007- 05- 09

12: 47: 55", "fxs. 51", "151", " 161", """, "",K " 162", "ext ensi on", " Zap/ 51- 2", "Di ¢
;;; 151-2 dials 152 after 4 seconds

"EV_CHAN_START", "2007- 05- 09

12: 47: 55", "fxs. 52", "162", """, "", "", "s", "extensi on", " Zap/ 52-1","", """, "X
, YU, "" sy 152 channel created to ring 152.

(152 ringing)

"EV_ANSVER', "2007- 05- 09
12:47:58","","152","151", ", """, "152", "extensi on", " Zap/ 52- 1", " AppDi al "
Li ne) ", " DOCUMENTATI ON', "", " 1178736475.7","","" ;;; 3 seconds |ater

152 answers

"EV_ANSVER', "2007- 05- 09

12:47: 58", "fxs. 51", "151", "151","", """, K " 162", "ext ensi on", " Zap/ 51- 2", "Di ¢
77, ... and 151-2 al so answers

"EV_BRI DGE_START", "2007- 05- 09

12: 47: 59", "fxs. 51", "151", " 161", """, "",K " 162", "ext ensi on", " Zap/ 51- 2", "Di ¢
7, 1 second later, bridge forned betw. 151-2 and 151 (152 answers,
151 and 152 convering; 150 is listening to silence; 151 hits flash

again... to start a 3way)

"EV_3WAY_START", "2007- 05- 09

12: 48:58","","151","152", """ "" "" "extension","Zap/51-1","Bri dged
Call","Zap/ 50- 1", " DOCUVENTATI ON*, "","1178736378. 4" ,"", " Zap/ 51-2" ;;

anot her hook-flash to begin a 3-way conference
"EV_BRI DGE_END', "2007- 05- 09
12: 48: 58", "fxs. 50", "150", "150","",""," 701", "extensi on", " Zap/ 50- 1", " Par

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

7,y - alnmost 1 mnute later, the bridge ends (151 flashes hook

agai n)
"EV_BRI DGE_START", "2007- 05- 09
12: 48: 58", "fxs. 50", "150", "150","",""," 701", "extensi on", " Zap/ 50- 1", " Par

7, 0O-second bridge at 150. (3 way conf formned)

"EV_BRI DGE_END", "2007- 05- 09

12: 48: 58", "fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
"EV_BRI DGE_START", "2007- 05- 09

12: 48: 58", "f xs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
7, bridge starts for 150

(3way now, then 151 hangs up.)

"EV_BRI DGE_END", "2007- 05- 09

12:49: 26", "f xs. 50", "150", " 150", "","", " 701", "extensi on", " Zap/ 50- 1", " Par
7, 28 seconds later, bridge ends

"EV_HANGUP", " 2007- 05- 09

12: 49: 26","","151", "1562","", """, "", K "extensi on", "Zap/ 51- 1", "Bri dged

Cal I ", "Zap/ 50- 1", " DOCUMENTATI ON', "","1178736378.4","","" ,;;; 151
hangs up, |eaves 150 and 152 connected

"EV_CHAN_END", "2007- 05- 09

12: 49: 26","","151", "152","","","", K "extensi on", "Zap/ 51- 1", "Bri dged

Cal I ", " Zap/ 50- 1", " DOCUMENTATI ON', "","1178736378.4","","" ,;;; 151
channel ends

"EV_CHAN_END", "2007- 05- 09

12: 49: 26", "fxs. 51", "151", " 151" ,"","","h", "extensi on", " Zap/ 51- 2ZOVBI E",
;57 152-2 channel ends (zonbie)

(just 150 and 152 now)

"EV_BRI DGE_END", "2007- 05- 09

12: 50: 13", "fxs. 50", "150", " 150", "","", " 152", "ext ensi on", " Zap/ 50- 1", "Di ¢
7., 47 sec later, the bridge from 150 to 152 ends
"EV_HANGUP", " 2007- 05- 09

12:50; 13","","152","152", """, "","" "extension","Zap/52-1","Bri dged
Cal | ", "Zap/ 50- 1", " DOCUMENTATI ON', "","1178736475. 7","","" ;;; 152
hangs up

"EV_CHAN_END", "2007- 05- 09

12:50: 13","","152", "152", """, "","" "extension","Zap/52-1", " Bri dged
Cal | ", " Zap/ 50- 1", " DOCUMENTATI ON*, "","1178736475. 7","","" ;;; 152

channel ends

"EV_HANGUP", "2007- 05- 09

12:50: 13", "fxs. 50", " 150", "150","","","h", "extensi on", " Zap/ 50-1","","",
;55 150 hangs up

"EV_CHAN END', "2007- 05- 09

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

12: 50: 13" , n f XS_ 50" , n 150l| , n 150l| , mn , nn , n hll , n eXt ensi On" , n Zap/ 50_ 1II , nn , mn ,
;.. 150 ends

In terms of Manager events, the above Events correspond to the following 80 Manager events:

Event: Newchanne
Privilege: call,al
Channel : Zap/52-1
State: Rsrvd

Cal | erl DNum 152

Cal |l erl DNane: fxs.52
Uni quei d: 1178801102.5

Event: Newcal lerid

Privilege: call,al

Channel : Zap/52-1

Call erl DNum 152

Cal | er| DNane: fxs. 52

Uni quei d: 1178801102.5

CID-CallingPres: 0 (Presentation Allowed, Not Screened)
Event: Newcal lerid

Privilege: call,al

Channel : Zap/52-1

Cal l erl DNum 152

Cal | er| DNane: fxs. 52

Uni quei d: 1178801102.5

CID-CallingPres: 0 (Presentation Allowed, Not Screened)

Event: Newstate
Privilege: call,al
Channel : Zap/52-1
State: Ring

Cal l erl DNum 152

Cal | er| DNanme: fxs. 52
Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,al
Channel . Zap/52-1

Cont ext: extension

Ext ension: 151
Priority: 1
Application: Set
AppDat a: CDR(nyvar) =zi ngo
Uni quei d: 1178801102.5
Event: Newexten

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Privilege: call,al
Channel : Zap/52-1

Cont ext: extension

Ext ensi on: 151

Priority: 2
Application: D a
AppDat a: Zap/ 51| 30| Tt Vi
Uni quei d: 1178801102.5

Event: Newchanne
Privilege: call,al
Channel : Zap/51-1
State: Rsrvd

Cal | erl DNum 151

Cal | er | DNane: fxs.51
Uni quei d: 1178801108. 6
Event: Newstate
Privilege: call, al
Channel : Zap/51-1
State: Ringing

Cal l erl DNum 152

Cal | er | DNane: fxs.52
Uni quei d: 1178801108. 6

Event: D a

Privilege: call,al
SubEvent: Begin

Sour ce: Zap/52-1
Destination: Zap/51-1

Cal l erl DNum 152

Cal I er | DNane: fxs. 52
SrcUni quel D 1178801102.5
Dest Uni quel D: 1178801108. 6
Event: Newcal lerid
Privilege: call,al

Channel : Zap/51-1

Cal l erl DNum 151

Cal | er I DNarme: <Unknown>
Uni quei d: 1178801108. 6
CID-CallingPres: O (Presentation Allowed, Not Screened)

Event: Newstate
Privilege: call,al
Channel : Zap/52-1
State: Ringing

Cal | erl DNum 152

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Cal | er | DNan®:
1178801102. 5
Newst at e
call, all
Zap/ 51-1

Uni quei d:
Event:
Privil ege:
Channel :

State: Up

fxs. 52

Call er| DNum 151

Cal | er | DNane:

Uni quei d:
Event:
Privil ege:
Channel :

State: Up

Call er| DNum 152

Cal | er | DNane:
1178801102.5

Uni quei d:

Event :
Privil ege:

Li nk

fxs. 52

call, all

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.
Uni quei d2: 1178801108.
Cal lerl D1: 152
CallerlD2: 151

Event: Unlink
Privilege: call,al

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.
Uni quei d2: 1178801108.
Cal l er1 D1: 152
CallerlD2: 151

Event: Link

Privilege: call,al

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.
Uni quei d2: 1178801108.
Cal lerl D1: 152

Cal lerl D2: 151

Event: Unlink
Privilege: call,al

<unknown>
1178801108. 6
Newst at e
call,all
Zap/ 52-1

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Uni quei d1: 1178801102.5
Uni quei d2: 1178801108. 6
CallerlDl: 152
Cal lerl D2: 151

Event: Par kedcCal
Privilege: call,al
Exten: 701

Channel : Zap/51-1
From Zap/52-1

Ti meout : 45

Cal l erl DNum 151
Cal | erl DNane: <unknown>
Event: D a
Privilege: call,al
SubEvent: End
Channel : Zap/52-1
D al St at us: ANSVER

Event: Newexten
Privilege: call,al
Channel : Zap/52-1

Cont ext: extension
Extension: h

Priority: 1
Application: Goto
AppDat a: | abel 1

Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,al
Channel : Zap/52-1

Cont ext: extension
Extension: h

Priority: 4
Application: Goto
AppDat a: | abel 2

Uni quei d: 1178801102.5

Event: Newexten

Privilege: call,al

Channel : Zap/52-1

Cont ext: extension

Extension: h

Priority: 2

Application: NoOp

AppDat a: I n Hangup! nyvar is zingo and accountcode is billsec is 26

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

and duration is 40 and end is 2007-05-10 06: 45:42.
Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,al
Channel : Zap/52-1

Cont ext: extension

Ext ensi on: h

Priority: 3
Application: Goto
AppDat a: | abel 3

Uni quei d: 1178801102.5

Event: Newexten

Privilege: call,al

Channel : Zap/52-1

Cont ext: extension

Ext ensi on: h

Priority: 5

Application: NoOp

AppDat a: Mre Hangup nmessage after hoppi ng around”
Uni quei d: 1178801102.5
Event: Hangup

Privilege: call,al

Channel : Zap/52-1

Uni quei d: 1178801102.5
Cause: 16

Cause-txt: Normal C earing

Event: Newchanne
Privilege: call,al
Channel : Zap/50-1
State: Rsrvd

Cal l erl DNum 150

Cal I er | DNane: fxs. 50
Uni quei d: 1178801162. 7
Event: Newcal lerid
Privilege: call,al
Channel : Zap/50-1

Cal l erl DNum 150

Cal | er| DNane: fxs. 50
Uni quei d: 1178801162.7
CID-CallingPres: O (Presentation Allowed, Not Screened)

Event: Newcallerid

Privilege: call,al
Channel : Zap/50-1

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Cal l erI DNum 150

Cal I er| DNanme: fxs. 50
Uni quei d: 1178801162.7
CID-CallingPres: O (Presentation Allowed, Not Screened)
Event: Newstate
Privilege: call,al
Channel : Zap/50-1
State: Ring

Cal l erl DNum 150

Cal I er| DNane: fxs. 50
Uni quei d: 1178801162. 7

Event: Newexten
Privilege: call,al
Channel : Zap/50-1

Cont ext: extension
Extension: 701
Priority: 1
Application: ParkedCal
AppDat a: 701

Uni quei d: 1178801162. 7
Event: UnPar kedCal
Privilege: call,al
Exten: 701

Channel : Zap/51-1
From Zap/50-1

Cal l erl DNum 151

Cal | er I DNanme: <unknown>
Event: Newstate
Privilege: call,al
Channel : Zap/50-1
State: Up

Cal l erl DNum 150

Cal I er | DNane: fxs. 50
Uni quei d: 1178801162. 7

Event: Link

Privilege: call,al
Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162. 7
Uni quei d2: 1178801108. 6
CallerlD1: 150

Cal ler1 D2: 151

Event: Newchanne
Privilege: call,al

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Channel :
St at e:

Zap/ 51- 2
Rsrvd

Call er| DNum 151

Cal | er | DNane:
1178801218. 8

Uni quei d:

Event:
Privil ege:

fxs. 51

Unl i nk

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal l erl D1:
Cal | erl D2:
Event :
Privil ege:

Li nk

1178801162.
1178801108.
150
151

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal | er| D1:
Cal l erl D2:

Event :
Privil ege:

1178801162.
1178801108.
150
151

Unl i nk

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal l erl D1:
Cal l erl D2:
Event :
Privil ege:

Li nk

1178801162.
1178801108.
150
151

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal l erl D1:
Cal |l erl D2:
Event :
Privil ege:
Channel :

1178801162.
1178801108.
150
151

Newcal | eri d

call, all

Zap/ 51-2

Call er| DNum 151

Cal | er | DName:
1178801218. 8
Cl D CallingPres:

Uni quei d:

fxs. 51

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

O (Presentation Al owed, Not Screened)

Event: Newcal lerid
Privilege: call,al
Channel : Zap/51-2

Cal l erl DNum 151

Cal I er| DNanme: fxs.51
Uni quei d: 1178801218.8
CID-CallingPres: O (Presentation Allowed, Not Screened)
Event: Newstate
Privilege: call,al
Channel : Zap/51-2
State: Ring

Cal l erl DNum 151

Cal | erl DNane: fxs.51
Uni quei d: 1178801218. 8

Event: Newexten
Privilege: call, al
Channel : Zap/51-2

Cont ext: extension

Ext ension: 152

Priority: 1
Application: Set
AppDat a: CDR(myvar) =zi ngo
Uni quei d: 1178801218.8
Event: Newexten
Privilege: call,al
Channel . Zap/51-2

Cont ext: extension

Ext ensi on: 152

Priority: 2
Application: D a
AppDat a: Zap/ 52| 30| Tt Wv
Uni quei d: 1178801218.8

Event: Newchanne
Privilege: call,al
Channel : Zap/52-1
State: Rsrvd

Cal | er | DNum 152

Cal | er| DNanme: fxs. 52
Uni quei d: 1178801223.9
Event: Newstate
Privilege: call,al
Channel : Zap/52-1
State: Ringing

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Cal l erl DNum 151

Cal I er| DNanme: fxs.51

Uni quei d: 1178801223.9
Event: D a

Privilege: call,al
SubEvent: Begin

Sour ce: Zap/51-2
Destination: Zap/52-1

Cal l erl DNum 151

Cal I er| DNanme: fxs.51
SrcUniquel D 1178801218. 8
Dest Uni quel D: 1178801223. 9

Event: Newcal lerid
Privilege: call,al
Channel : Zap/52-1

Cal l erl DNum 152

Cal | er | DNane: <Unknown>
Uni quei d: 1178801223.9
CID-CallingPres: O (Presentation Allowed, Not Screened)
Event: Newstate
Privilege: call,al
Channel : Zap/51-2
State: Ringing

Cal | erl DNum 151

Cal | erl DNane: fxs.51
Uni quei d: 1178801218.8

Event: Newstate
Privilege: call,al
Channel : Zap/52-1
State: Up

Cal | er | DNum 152

Cal | er I DNanme: <unknown>
Uni quei d: 1178801223.9
Event: Newstate
Privilege: call,al
Channel : Zap/51-2
State: Up

Cal | erI DNum 151

Cal I er| DNanme: fxs.51
Uni quei d: 1178801218. 8

Event: Link

Privilege: call,al
Channel 1: Zap/51-2

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Channel 2: Zap/52-1

Uni quei d1
Uni quei d2:
Cal | er| D1:
Cal l erl D2:
Unl i nk
Privil ege:

Event :

1178801218.
1178801223.

151
152

call,all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal l erl D1:
Cal | erl D2:

Event:

Li nk
Privil ege:

1178801162.
1178801108.

150
151

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal l erl D1:
Cal | er | D2:
Unl i nk
Privil ege:

Event :

1178801162.
1178801108.

150
151

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal | er| D1:
Cal l erl D2:

Event:

Li nk
Privil ege:

1178801162.
1178801108.

150
151

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal l erl D1:
Cal | erl D2:
Unl i nk
Privil ege:

Event:

1178801162.
1178801108.

150
151

call, all

Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1
Uni quei d2:
Cal l erl D1:

1178801162.
1178801108.

150

(0]

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Cal ler1 D2: 151

Event: Hangup
Privilege: call,al
Channel : Zap/51-1

Uni quei d: 1178801108. 6
Cause: 16

Cause-txt: Normm

Cl earing

Event: Newexten
Privilege: call,al
Channel : Zap/50-1

Cont ext: extension

Ext ensi on: h

Priority: 1
Application: Goto
AppDat a: | abel 1

Uni quei d: 1178801162. 7
Event: Newexten
Privilege: call,al
Channel . Zap/50-1

Cont ext: extension
Extension: h

Priority: 4
Application: Goto
AppDat a: | abel 2

Uni quei d: 1178801162.7

Event: Newexten

Privilege: call,al

Channel : Zap/50-1

Cont ext: extension

Extension: h

Priority: 2

Application: NoQOp

AppDat a: I n Hangup! nyvar is and accountcode is billsec is 0 and
duration is 0 and end is 2007-05-10 06: 48: 37.
Uni quei d: 1178801162.7

Event: Newexten

Privilege: call,al

Channel : Zap/50-1

Cont ext: extension

Ext ensi on: h

Priority: 3

Application: Goto

AppDat a: | abel 3

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Uni quei d: 1178801162. 7

Event: Newexten
Privilege: call, al
Channel : Zap/50-1
Cont ext: extension
Ext ensi on: h
Priority: 5
Application: NoOp
AppDat a: More
Hangup nessage after hoppi ng around”
Uni quei d: 1178801162.7

Event: Masquer ade
Privilege: call,al

Cl one: Zap/50-1
CloneState: Up
Original: Zap/51-2
Oiginal State: Up
Event: Renane
Privilege: call,al

A dnane: Zap/50-1
Newnane: Zap/50- 1<MASQ>
Uni quei d: 1178801162.7

Event: Renane
Privilege: call,al

A dnane: Zap/51-2
Newnane: Zap/50-1
Uni quei d: 1178801218.8
Event: Renane
Privilege: call,al
A dname: Zap/ 50- 1<MASQ>
Newnane: Zap/51-2<zZOwBIl E>
Uni quei d: 1178801162. 7
Event: Hangup

Privilege: call,al
Channel : Zap/ 51- 2<zOVBI E>
Uni quei d: 1178801162.7
Cause: O
Cause-txt: Unknown

Event: Unlink

Privilege: call,al
Channel 1: Zap/50-1
Channel 2: Zap/52-1

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Uni quei d1: 1178801218. 8
Uni quei d2: 1178801223.9
Cal lerl D1: 150

Callerl D2: 152

Event: Hangup

Privilege: call,al

Channel : Zap/52-1

Uni quei d: 1178801223.9
Cause: 16

Cause-txt: Normal C earing

Event: D a
Privilege: call,al
SubEvent: End
Channel : Zap/50-1
Di al St at us: ANSVER
Event . Newexten
Privilege: call, al
Channel : Zap/50-1
Cont ext: extension
Ext ensi on: h
Priority: 1
Application: Goto
AppDat a: | abel 1

Uni quei d: 1178801218.8

Event: Newexten

Privilege: call,al

Channel : Zap/50-1

Cont ext: extension

Extension: h

Priority: 4

Application: Goto

AppDat a: | abel 2

Uni quei d: 1178801218. 8

Event: Newexten

Privilege: call,al

Channel : Zap/50-1

Cont ext: extension

Extension: h

Priority: 2

Application: NoQOp

AppDat a: I n Hangup! nyvar is and accountcode is billsec is 90 and
duration is 94 and end is 2007-05-10 06: 48: 37.
Uni quei d: 1178801218.8

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Event: Newexten
Privilege: call,al
Channel . Zap/50-1

Cont ext: extension
Extension: h

Priority: 3
Application: Goto
AppDat a: | abel 3

Uni quei d: 1178801218. 8
Event: Newexten
Privilege: call,al
Channel : Zap/50-1

Cont ext: extension
Extension: h

Priority: 5
Application: NoOp
AppDat a: Mdre Hangup nessage after hoppi ng around”
Uni quei d: 1178801218. 8
Event: Hangup
Privilege: call,al
Channel . Zap/50-1

Uni quei d: 1178801218. 8

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Cause: 16
Cause-txt: Normal C earing

And, humorously enough, the above 80 manager events, or 42 CEL events, correspond to the
following two CDR records (at the moment!):

""fxs. 52"

152"," 152", "h", "extensi on", "Zap/ 52-1"," Zap/ 51- 1", "NoOp", " Mor e Hangup
nmessage after hopping around"","2007-05-09 17:35: 56", "2007-05-09

17: 36: 20", "2007- 05-09

17: 36: 36", "40", " 16", " ANSWERED', " DOCUMENTATI ON', "", " 1178753756. 0", ""
""fxs. 50"

150", " 150", " 152", "ext ensi on", " Zap/ 50- 1", " Zap/ 51- 1", "NoOp", "Mor e
Hangup nessage after hoppi ng around"","2007-05-09
17:37:59","2007-05-09 17:38: 06", "2007-05-09

17:39:11","72"," 65", " ANSWERED", " DOCUMENTATI ON', "","1178753871. 3", ""

CEL Events and Fields

While CDRs and the Manager are basically both event tracking mechanisms, CEL tries to track
only those events that might pertain to billing issues.

Table of CEL Events

Event Description

CHAN_START The time a channel was created

CHAN_END The time a channel was terminated

ANSWER The time a channel was answered (ie, phone taken off-hook, etc)
HANGUP The time at which a hangup occurred.

CONF_ENTER The time a channel was connected into a conference room
CONF_EXIT The time a channel was removed from a conference room
CONF_START The time the first person enters a conference

CONF_END The time the last person left a conf (and turned out the lights?)
APP_START The time a tracked application was started

APP_END the time a tracked application ended

PARK_START The time a call was parked

PARK_END unpark event

BRIDGE_START

The time a bridge is started

BRIDGE_END The time a bridge is ended
3WAY_START When a 3-way conf starts (usually via attended xfer)
3WAY_END When one or all exit a 3-way conf

BLINDTRANSFER

When a blind transfer is initiated

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ATTENDEDTRANSFER = When an attended transfer is initiated

TRANSFER Generic transfer initiated; not used yet...?
HOOKFLASH So far, when a hookflash event occurs on a Zap interface
USER_EVENT these are triggered from the dialplan, and have a name given by the user.

Table of CEL Event Fields

Table 11.2: List of CEL Event Fields

Field Description

eventtype The name of the event; see the above list; each is prefixed with "EV_".
eventtime The time the event happened

cidname CID name field

cidnum CID number field

cidani CID AN field

cidrdnis CID RDNIS field

ciddnid CID DNID field

exten The extension in the dialplan

context The context in the dialplan

channame The name assigned to the channel in which the event took place

appname The name of the current application
appdata The arguments that will be handed to that application
amaflags The AMA flags associated with the event; user assignable.

accountcode = A user assigned datum (string)

uniqueid Each Channel instance gets a unique ID associated with it.

userfield A user assigned datum (string)

linkedid the per-call id, spans several events, possibly.

peer For bridge or other 2-channel events, this would be the other channel name

CEL Applications and Functions

Top-level page for information on CEL Applications and Functions

CEL Function

* * * * ® THIS IS NO LONGER TRUE REWRITE *****

The CEL function parallels the CDR function, for fetching values from the channel or event. It has
some notable notable differences, though! For instance, CEL data is not stored on the channel.
Well, not much of it, anyway! You can use the CEL function to set the amaflags, accountcode,
and userfield, which are stored on the channel.

Channel variables are not available for reading from the CEL function, nor can any variable name

other than what's in the list, be set. CDRs have a structure attached to the channel, where the
CDR function could access the values stored there, or set the values there. CDRs could store

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

their own variable lists, but CEL has no such storage. There is no reason to store any event
information, as they are immediately output to the various backends at the time they are
generated.

See the description for the CEL function from the CLI: core show function CEL

Here is a list of all the available channel field names:

cidname
userfield
cidnum
amaflags
cidani
cidrdnis
ciddnid
appdata
exten
accountcode
context
uniqueid
channame
appname
peer
eventtime
eventtype

CELGenUserEvent Application
This application allows the dialplan to insert custom events into the event stream.

For more information, in the CLI, type: core show application CELGenUserEvent
Its arguments take this format:

CELCGenUser Event (event nane)

Please note that there is no restrictions on the name supplied. If it happens to match a standard
CEL event name, it will look like that event was generated. This could be a blessing or a curse!

CEL Configuration Files
cel.conf

Generating Billing Information from CEL

° ° ° ® This is the Next Big Task ****
CEL Storage Backends

Right now, the CEL package will support CSV, Customized CSV, ODBC, PGSQL, TDS, Sqlite3,
and Radius back ends. See the doc/celdriver.tex file for how to use these back ends.

MSSQL CEL Backend

Asterisk can currently store Channel Events into an MSSQL database in two different ways:
cel_odbc or cel_tds

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Channel Event Records can be stored using unixODBC (which requires the FreeTDS package)
[cel_odbc] or directly by using just the FreeTDS package [cel_tds]

The following provide some examples known to get asterisk working with mssql.

H Only choose one db connector.

ODBC using cel_odbc
Compile, configure, and install the latest unixODBC package:

tar -zxvf uni xODBC-2.2.9.tar.gz && cd uni xODBC-2.2.9 && ./configure
--sysconfdir=/etc --prefix=/usr --disable-gui && make && nake
i nstall

Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz & cd freetds-0.62.4 & ./configure
--prefix=/usr --with-tdsver=7.0 \ --w th-unixodbc=/usr/lib && make
&& make install

Compile, or recompile, asterisk so that it will now add support for cel_odbc.

make clean && ./configure --wth-odbc &% make update && nmake && nake
i nstall

Setup odbc configuration files.

These are working examples from my system. You will need to modify for your setup. You are
not required to store usernames or passwords here.

/etc/odbcinst.ini

[Fr eeTDS]

Description = FreeTDS ODBC driver for MSSQL
Driver = /usr/lib/libtdsodbc. so

Setup = /usr/lib/libtdsS. so

Fil eUsage = 1

/etc/odbc.ini

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[MSSQL- ast eri sk]

description = Asteri sk ODBC for MSSQL
driver = FreeTDS

server = 192.168.1.25

port = 1433

dat abase = voi pdb

tds_version = 7.0

| anguage = us_engli sh

it Only install one database connector. Do not confuse asterisk by using both ODBC (cel_odbc) and FreeTDS (cel_tds). This
command will erase the contents of cel_tds.conf

[-f /etc/asterisk/cel _tds.conf] > /etc/asterisk/cel_tds. conf

! unixODBC requires the freeTDS package, but asterisk does not call freeTDS directly.

Now set up cel_odbc configuration files.

These are working samples from my system. You will need to modify for your setup. Define your
usernames and passwords here, secure file as well.

/etc/asterisk/cel_odbc.conf

[gl obal]
dsn=MSSQL- ast eri sk
user nane=voi pdbuser
passwor d=voi pdbpass
| oguni quei d=yes

And finally, create the 'cel' table in your mssqgl database.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CREATE TABLE cel (
[eventtype] [varchar] (30) NOT NULL ,
[eventtine] [datetinme] NOT NULL ,
[cidnane] [varchar] (80) NOT NULL |,
[cidnunm] [varchar] (80) NOT NULL ,
[cidani] [varchar] (80) NOT NULL ,
[cidrdnis] [varchar] (80) NOT NULL ,
[ciddnid] [varchar] (80) NOT NULL |,
[exten] [varchar] (80) NOT NULL |,
[context] [varchar] (80) NOT NULL ,
[channame] [varchar] (80) NOT NULL ,
[appnane] [varchar] (80) NOT NULL |,
[appdata] [varchar] (80) NOT NULL ,
[amafl ags] [int] NOT NULL ,
[account code] [varchar] (20) NOT NULL ,
[uni queid] [varchar] (32) NOT NULL |,
[peer] [varchar] (80) NOT NULL ,
[userfield] [varchar] (255) NOT NULL

Start asterisk in verbose mode, you should see that asterisk logs a connection to the database
and will now record every desired channel event at the moment it occurs.

FreeTDS, using cel_tds
Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz && cd freetds-0.62.4 && ./configure
--prefix=/usr --with-tdsver=7.0 make && meke install

Compile, or recompile, asterisk so that it will now add support for cel_tds.

meke clean &% ./configure --with-tds &% make update && nake && make
i nstall

Only install one database connector. Do not confuse asterisk by using both ODBC (cel_odbc) and FreeTDS (cel_tds). This
command will erase the contents of cel_odbc.conf

[-f /etc/asterisk/cel _odbc.conf] > /etc/asterisk/cel_odbc. conf

Setup cel_tds configuration files.

These are working samples from my system. You will need to modify for your setup. Define your
usernames and passwords here, secure file as well.

letc/asterisk/cel_tds.conf

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[gl obal]

host nane=192. 168. 1. 25
port=1433
dbnane=voi pdb

user =voi pdbuser
passwor d=voi pdpass
char set =Bl G5

And finally, create the 'cel' table in your mssqgl database.

CREATE TABLE cel (
[eventtype] [varchar] (30) NULL
[eventtine] [datetinme] NULL
[cidnane] [varchar] (80) NULL
[cidnum] [varchar] (80) NULL
[cidani] [varchar] (80) NULL
[cidrdnis] [varchar] (80) NULL
[ciddnid] [varchar] (80) NULL
[exten] [varchar] (80) NULL
[context] [varchar] (80) NULL
[channanme] [varchar] (80) NULL
[appnane] [varchar] (80) NULL
[appdata] [varchar] (80) NULL
[amafl ags] [varchar] (16) NULL ,
[account code] [varchar] (20) NULL
[uniqueid] [varchar] (32) NULL
[userfield] [varchar] (255) NULL ,
[peer] [varchar] (80) NULL

Start asterisk in verbose mode, you should see that asterisk logs a connection to the database
and will now record every call to the database when it's complete.

MySQL CEL Backend

Using MySQL for Channel Event records is supported by using ODBC and the cel_odbc module.
PostgreSQL CEL Backend

If you want to go directly to postgresql database, and have the cel_pgsqgl.so compiled you can
use the following sample setup. On Debian, before compiling asterisk, just install libpgxx-dev.
Other distros will likely have a similiar package.

Once you have the compile done, copy the sample cel_pgsql.conf file or create your own.

Here is a sample:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

letc/asterisk/cel_pgsql.conf

; Sanple Asterisk config file for CEL | ogging to PostgresSQ
[gl obal]

host nane=| ocal host

port =5432

dbname=ast eri sk

passwor d=passwor d

user =post gres

t abl e=cel

Now create a table in postgresql for your cels

CREATE TABLE cel (
id serial |,
eventtype varchar (30) NOT NULL ,
eventtinme tinmestanp NOT NULL ,
userdeftype varchar (255) NOT NULL ,
ci d_nanme varchar (80) NOT NULL |,
cid_num varchar (80) NOT NULL ,
cid_ani varchar (80) NOT NULL |,
cid_rdnis varchar (80) NOT NULL ,
cid_dnid varchar (80) NOT NULL |,
exten varchar (80) NOT NULL ,
context varchar (80) NOT NULL ,
channane varchar (80) NOT NULL |,
appnane varchar (80) NOT NULL ,
appdata varchar (80) NOT NULL ,
amafl ags int NOT NULL ,
account code varchar (20) NOT NULL ,
peeraccount varchar (20) NOT NULL |,
uni quei d varchar (150) NOT NULL |,
I i nkedi d varchar (150) NOT NULL |,
userfield varchar (255) NOT NULL ,
peer varchar (80) NOT NULL

);
SQLite 3 CEL Backend

SQLite version 3 is supported in cel_sglite3_custom.

RADIUS CEL Backend
What is needed

®* FreeRADIUS server

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Radiusclient-ng library
® Asterisk PBX

Installation of the Radiusclient library

Download the sources
From http://developer.berlios.de/projects/radiusclient-ng/
Untar the source tarball:

root @ ocal host:/usr/local/src# tar xvfz radiusclient-ng-0.5.2.tar.gz

Compile and install the library:

root @ocal host:/usr/local/src# cd radiusclient-ng-0.5.2

root @ ocal host:/usr/local/src/radiusclient-ng-0.5.2#. /configure
root @ ocal host:/usr/local/src/radiusclient-ng-0.5.2# nake

root @ ocal host:/usr/local/src/radiusclient-ng-0.5.2# nake install

Configuration of the Radiusclient library

By default all the configuration files of the radiusclient library will be in
lusr/local/etc/radiusclient-ng directory.

File "radiusclient.conf* Open the file and find lines containing the following:

aut hserver | ocal host

This is the hostname or IP address of the RADIUS server used for authentication. You will have
to change this unless the server is running on the same host as your Asterisk PBX.

acctserver | ocal host

This is the hostname or IP address of the RADIUS server used for accounting. You will have to
change this unless the server is running on the same host as your Asterisk PBX.

File "servers"

RADIUS protocol uses simple access control mechanism based on shared secrets that allows
RADIUS servers to limit access from RADIUS clients.

A RADIUS server is configured with a secret string and only RADIUS clients that have the same
secret will be accepted.

You need to configure a shared secret for each server you have configured in radiusclient.conf
file in the previous step. The shared secrets are stored in /usr/local/etc/radiusclient-ng/servers

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://developer.berlios.de/projects/radiusclient-ng/

file.
Each line contains hostname of a RADIUS server and shared secret used in communication with

that server. The two values are separated by white spaces. Configure shared secrets for every
RADIUS server you are going to use.

File "dictionary"

Asterisk uses some attributes that are not included in the dictionary of radiusclient library,
therefore it is necessary to add them. A file called dictionary.digium (kept in the contrib dir) was
created to list all new attributes used by Asterisk. Add to the end of the main dictionary

file /usr/locall/etc/radiusclient-ng/dictionary the line:

$I NCLUDE / path/to/dictionary.digium

Install FreeRADIUS Server (Version 1.1.1)

Download sources tarball from:
http://freeradius.org/
Untar, configure, build, and install the server:

root @ ocal host:/usr/local/src# tar xvfz freeradius-1.1.1.tar.gz
root @ocal host:/usr/local/src# cd freeradius-1.1.1

root @ocal host"/usr/local/src/freeradius-1.1.1# ./configure
root @ocal host"/usr/local/src/freeradius-1.1.1# nmake

root @ocal host"/usr/local/src/freeradius-1.1.1# nmake install

All the configuration files of FreeRADIUS server will be in /usr/local/etc/raddb directory.
Configuration of the FreeRADIUS Server

There are several files that have to be modified to configure the RADIUS server. These are
presented next.

File "clients.conf"
File /usr/local/etc/raddb/clients.conf contains description of RADIUS clients that are allowed to
use the server. For each of the clients you need to specify its hostname or IP address and also a

shared secret. The shared secret must be the same string you configured in radiusclient library.

Example:

client nmyhost { secret = nysecret shortnane = foo }

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://freeradius.org/

This fragment allows access from RADIUS clients on "myhost” if they use "mysecret" as the
shared secret. The file already contains an entry for localhost (127.0.0.1), so if you are running
the RADIUS server on the same host as your Asterisk server, then modify the existing entry
instead, replacing the default password.

File "dictionary"

H As of version 1.1.2, the dictionary.digium file ships with FreeRADIUS.

The following procedure brings the dictionary.digium file to previous versions of FreeRADIUS.

File /usr/local/etc/raddb/dictionary contains the dictionary of FreeRADIUS server. You have to
add the same dictionary file (dictionary.digium), which you added to the dictionary of
radiusclient-ng library. You can include it into the main file, adding the following line at the end of
file /usr/local/etc/raddb/dictionary:

$I NCLUDE / pat h/to/ dictionary. digi um

That will include the same new attribute definitions that are used in radiusclient-ng library so the
client and server will understand each other.

Asterisk Accounting Configuration

Compilation and installation:

The module will be compiled as long as the radiusclient-ng library has been detected on your
system.

By default FreeRADIUS server will log all accounting requests into
lusr/local/var/log/radius/radacct directory in form of plain text files. The server will create one file
for each hostname in the directory. The following example shows how the log files look like.

Asterisk now generates Call Detail Records. See /include/asterisk/cel.h for all the fields which are
recorded. By default, records in comma separated values will be created in
Ivar/log/asterisk/cel-csv.

The configuration file for cel_radius.so module is :
letc/asterisk/cel.conf This is where you can set CEL related parameters as well as the path to the
radiusclient-ng library configuration file.

This is where you can set CDR related parameters as well as the path to the radiusclient-ng
library configuration file.

Logged Values

"Asterisk-Acc-Code", The account name of detail records
"Asterisk-CidName",

"Asterisk-CidNum®,

"Asterisk-Cidani",

"Asterisk-Cidrdnis",

"Asterisk-Ciddnid",

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

"Asterisk-Exten",

"Asterisk-Context", The destination context

"Asterisk-Channame", The channel name

"Asterisk-Appname", Last application run on the channel
"Asterisk-App-Data”, Argument to the last channel
"Asterisk-Event-Time",

"Asterisk-Event-Type",

"Asterisk-AMA-Flags", DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.
"Asterisk-Unique-ID", Unique call identifier

"Asterisk-User-Field" User field set via SetCELUserField
"Asterisk-Peer" Name of the Peer for 2-channel events (like bridge)

Channel Variables

What's a channel variable? Read on to find out why they're important and how they'll improve
your quality of life.

There are two levels of parameter evaluation done in the Asterisk dial plan in extensions.conf.

1. The first, and most frequently used, is the substitution of variable references with their values.
2. Then there are the evaluations of expressions done in $[..]. This will be discussed below.

Asterisk has user-defined variables and standard variables set by various modules in Asterisk.
These standard variables are listed at the end of this document.

Parameter Quoting

s, 5, BackG ound, bl abl a
11>

The parameter (blabla) can be quoted ("blabla™). In this case, a comma does not terminate the
field. However, the double quotes will be passed down to the Background command, in this
example.

Also, characters special to variable substitution, expression evaluation, etc (see below), can be

quoted. For example, to literally use a $ on the string "$1231", quote it with a preceding
. Special characters that must be quoted to be used, are [] $ " \. (to write \itself, use a backslash.

).
These Double quotes and escapes are evaluated at the level of the asterisk config file parser.
Double quotes can also be used inside expressions, as discussed below.

About Variables

Parameter strings can include variables. Variable names are arbitrary strings. They are stored in
the respective channel structure.

To set a variable to a particular value, do:

1, 2, Set (var nane=val ue)

11>

You can substitute the value of a variable everywhere using ${variablename}. For example, to
stringwise append $lala to $blabla and store result in $koko, do:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

1, 2, Set (koko=${bl abl a} ${1 al a})
11>

There are two reference modes - reference by value and reference by name. To refer to a
variable with its name (as an argument to a function that requires a variable), just write the name.
To refer to the variable's value, enclose it inside ${}. For example, Set takes as the first argument
(before the =) a variable name, so:

1, 2, Set (koko=l al a) exten => 1, 3, Set (${ koko}=bl abl a)
11>

stores to the variable "koko" the value "lala" and to variable "lala" the value "blabla”.
In fact, everything contained ${here} is just replaced with the value of the variable "here".

Variable Inheritance

Variable names which are prefixed by "™ will be inherited to channels that are created in the
process of servicing the original channel in which the variable was set. When the inheritance
takes place, the prefix will be removed in the channel inheriting the variable. If the name is
prefixed by " in the channel, then the variable is inherited and the "_" will remain intact in the
new channel.

In the dialplan, all references to these variables refer to the same variable, regardless of having a
prefix or not. Note that setting any version of the variable removes any other version of the
variable, regardless of prefix.

Variable Inheritance Examples

Sets an inherited version of "FOQO" variable Set(FOO=bar), Removes the inherited version and
sets a local variable.

However, NoOp(${ _FOOQY}) is identical to NoOp(${FOO0})
Selecting Characters from Variables

The format for selecting characters from a variable can be expressed as:

If you want to select the first N characters from the string assigned to a variable, simply append a
colon and the number of characters to skip from the beginning of the string to the variable name.

_9X., 1, Set (nunber =${ EXTEN: 1})
11>

Assuming we've dialed 918005551234, the value saved to the 'number' variable would be

18005551234. This is useful in situations when we require users to dial a number to access an
outside line, but do not wish to pass the first digit.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

If you use a negative offset number, Asterisk starts counting from the end of the string and then
selects everything after the new position. The following example will save the numbers 1234 to
the 'number’ variable, still assuming we've dialed 918005551234.

_9X., 1, Set (nunber =${ EXTEN: - 4})
11>

We can also limit the number of characters from our offset position that we wish to use. This is
done by appending a second colon and length value to the variable name. The following example
will save the numbers 555 to the 'number’ variable.

_9X., 1, Set (nunber =${ EXTEN: 5: 3})
11>

The length value can also be used in conjunction with a negative offset. This may be useful if the
length of the string is unknown, but the trailing digits are. The following example will save the
numbers 555 to the 'number’ variable, even if the string starts with more characters than
expected (unlike the previous example).

_9X., 1, Set (nunber =${ EXTEN: - 7: 3})
11>

If a negative length value is entered, Asterisk will remove that many characters from the end of
the string.

_XXXX#, 1, Set (pi n=${ EXTEN: 0: - 1})
11>

Expressions

Everything contained inside a bracket pair prefixed by a $ (like $[this]) is considered as an
expression and it is evaluated. Evaluation works similar to (but is done on a later stage than)
variable substitution: the expression (including the square brackets) is replaced by the result of
the expression evaluation.

For example, after the sequence:

1,1,Set(lala=$[1+ 2]) exten => 1,2, Set (koko=$[2* ${lala}])
11>

the value of variable koko is "6".

and, further:

1,1,Set,(lala=$[1+ 21]);
11>

will parse as intended. Extra spaces are ignored.

Spaces Inside Variables Values

If the variable being evaluated contains spaces, there can be problems.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

For these cases, double quotes around text that may contain spaces will force the surrounded
text to be evaluated as a single token. The double quotes will be counted as part of that lexical
token.

As an example:

s, 6,Cotol f($["${CALLERI D(nane)}" : "Privacy Manager"]?callerid-liar,s,1:s,7)
11>

The variable CALLERID(name) could evaluate to "DELOREAN MOTORS" (with a space) but the
above will evaluate to:

®* "DELOREAN MOTORS" : "Privacy Manager"
and will evaluate to O.

The above without double quotes would have evaluated to:

®* DELOREAN MOTORS : Privacy Manager

and will result in syntax errors, because token DELOREAN is immediately followed by token
MOTORS and the expression parser will not know how to evaluate this expression, because it
does not match its grammar.

Operators

Operators are listed below in order of increasing precedence. Operators with equal precedence
are grouped within { } symbols.

® exprl | expr2
Return the evaluation of exprl if it is neither an empty string nor zero; otherwise, returns the evaluation of expr2.

® exprl & expr2
Return the evaluation of exprl if neither expression evaluates to an empty string or zero; otherwise, returns zero.

® exprl{= >, >=, <, <=, I=} expr2
Return the results of floating point comparison if both arguments are numbers; otherwise, returns the results of string comparison using
the locale-specific collation sequence. The result of each comparison is 1 if the specified relation is true, or 0 if the relation is false.

® exprl {+, -} expr2
Return the results of addition or subtraction of floating point-valued arguments.

® exprl{, /, %} expr2*
Return the results of multiplication, floating point division, or remainder of arguments.

* -exprl
Return the result of subtracting exprl from 0. This, the unary minus operator, is right associative, and has the same precedence as the !
operator.

* lexprl
Return the result of a logical complement of exprl. In other words, if exprl is null, 0, an empty string, or the string "0", return a 1.
Otherwise, return a 0. It has the same precedence as the unary minus operator, and is also right associative.

® exprl:expr2
The *:' operator matches exprl against expr2, which must be a regular expression. The regular expression is anchored to the beginning
of the string with an implicit ™.

If the match succeeds and the pattern contains at least one regular expression subexpression ™,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

the string corresponing to "\1' is returned; otherwise the matching operator returns the number of
characters matched. If the match fails and the pattern contains a regular expression
subexpression the null string is returned; otherwise 0.

Normally, the double quotes wrapping a string are left as part of the string. This is disastrous to
the : operator. Therefore, before the regex match is made, beginning and ending double quote
characters are stripped from both the pattern and the string.

® exprl =~ expr2
Exactly the same as the ":' operator, except that the match is not anchored to the beginning of the string. Pardon any similarity to

seemingly similar operators in other programming languages! The ":" and "=~" operators share the same precedence.

® exprl ? expr2 :: expr3
Traditional Conditional operator. If exprl is a number that evaluates to 0 (false), expr3 is result of the this expression evaluation.
Otherwise, expr2 is the result. If exprl is a string, and evaluates to an empty string, or the two characters ("), then expr3 is the result.
Otherwise, expr2 is the result. In Asterisk, all 3 exprs will be "evaluated"; if exprl is "true", expr2 will be the result of the "evaluation” of
this expression. expr3 will be the result otherwise. This operator has the lowest precedence.

® exprl ~~ expr2
Concatenation operator. The two exprs are evaluated and turned into strings, stripped of surrounding double quotes, and are turned into
a single string with no invtervening spaces. This operator is new to trunk after 1.6.0; it is not needed in existing extensions.conf code.
Because of the way asterisk evaluates [] constructs (recursively, bottom- up), no is ever present when the contents of a [] is evaluated.
Thus, tokens are usually already merged at evaluation time. But, in AEL, various exprs are evaluated raw, and [] are gathered and treated
as tokens. And in AEL, no two tokens can sit side by side without an intervening operator. So, in AEL, concatenation must be explicitly
specified in expressions. This new operator will play well into future plans, where expressions (constructs) are merged into a single
grammar.

Parentheses are used for grouping in the usual manner.
Operator precedence is applied as one would expect in any of the C or C derived languages.

Floating Point Numbers

In 1.6 and above, we shifted the $][...] expressions to be calculated via floating point numbers
instead of integers. We use 'long double' numbers when possible, which provide around 16 digits
of precision with 12 byte numbers.

To specify a floating point constant, the number has to have this format: D.D, where D is a string
of base 10 digits. So, you can say 0.10, but you can't say .10 or 20.- we hope this is hot an
excessive restriction!

Floating point numbers are turned into strings via the '%g'/'%Lg' format of the printf function set.
This allows numbers to still 'look’ like integers to those counting on integer behavior. If you were
counting on 1/4 evaluating to 0, you need to now say TRUNC(1/4). For a list of all the
truncation/rounding capabilities, see the next section.

Functions

In 1.6 and above, we upgraded the $[] expressions to handle floating point numbers. Because of
this, folks counting on integer behavior would be disrupted. To make the same results possible,
some rounding and integer truncation functions have been added to the core of the Expr2 parser.
Indeed, dialplan functions can be called from $[..] expressions without the ${...} operators. The
only trouble might be in the fact that the arguments to these functions must be specified with a

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

comma. If you try to call the MATH function, for example, and try to say 3 + MATH(7*8), the
expression parser will evaluate 7*8 for you into 56, and the MATH function will most likely
complain that its input doesn't make any sense.

We also provide access to most of the floating point functions in the C library. (but not all of
them).

While we don't expect someone to want to do Fourier analysis in the dialplan, we don't want to
preclude it, either.

Here is a list of the 'builtin’' functions in Expr2. All other dialplan functions are available by simply
calling them (read-only). In other words, you don't need to surround function calls in $I...]
expressions with ${...}. Don't jump to conclusions, though! - you still need to wrap variable names
in curly braces!

COS(x) x is in radians. Results vary from -1 to 1.

SIN(x) x is in radians. Results vary from -1 to 1.

TAN(X) X is in radians.

ACOS(x) x should be a value between -1 and 1.

ASIN(x) x should be a value between -1 and 1.

ATAN(x) returns the arc tangent in radians; between -PI/2 and PI/2.

ATAN2(x,y) returns a result resembling y/x, except that the signs of both args are used to determine the quadrant of the result. Its result
is in radians, between -PIl and PI.

POW(x,y) returns the value of x raised to the power of y.

SQRT(x) returns the square root of x.

FLOOR(x) rounds x down to the nearest integer.

CEIL(x) rounds x up to the nearest integer.

ROUND(x) rounds x to the nearest integer, but round halfway cases away from zero.
RINT(x) rounds x to the nearest integer, rounding halfway cases to the nearest even integer.
TRUNC(x) rounds x to the nearest integer not larger in absolute value.

REMAINDER(x,y) computes the remainder of dividing x by y. The return value is x - n*y, where n is the value x/y, rounded to the nearest
integer. If this quotient is 1/2, it is rounded to the nearest even number.

EXP(x) returns e to the x power.

EXP2(x) returns 2 to the x power.

LOG(x) returns the natural logarithm of x.

LOG2(x) returns the base 2 log of x.

LOG10(x) returns the base 10 log of x.

Expressions Examples

*'One Thousand Five Hundred" =~ "(T[Expressions Examples”])"
returns: Thousand

® "One Thousand Five Hundred" =~ "T[Expressions Examples”]"
returns: 8

® "One Thousand Five Hundred" : "T[Expressions Examples™ |"
returns: 0

® "8015551212":"(...)"
returns: 801

® "3075551212""...(...)"
returns: 555

® 1"One Thousand Five Hundred" =~ "T[Expressions Examples”]"
returns: 0
(because it applies to the string, which is non-null, which it turns to "0", and then looks for the pattern in the "0", and doesn't find it)

® I("One Thousand Five Hundred" : "T[Expressions Examples”]+")
returns: 1
(because the string doesn't start with a word starting with T, so the match evals to 0, and the ! operator inverts itto 1)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® 2+8/2
returns: 6
(because of operator precedence; the division is done first, then the addition)

® 2+8/2
returns: 6
Spaces aren't necessary

® (2+8)/2
returns: 5
of course

* (3+8)/2
returns: 5.5

® TRUNC((3+8)/2)
returns: 5

® FLOOR(2.5)
returns: 2

® FLOOR(-2.5)
returns: -3

® CEIL(2.5)
returns: 3

® CEIL(-2.5)
returns: -2

® ROUND(2.5)
returns: 3

® ROUND(3.5)
returns: 4

® ROUND(-2.5)
returns: -3

®* RINT(2.5)
returns: 2

®* RINT(3.5)
returns: 4

® RINT(-2.5)
returns: -2

® RINT(-3.5)
returns: -4

®* TRUNC(2.5)
returns: 2

® TRUNC(3.5)
returns: 3

® TRUNC(-3.5)
returns: -3

Of course, all of the above examples use constants, but would work the same if any of the
numeric or string constants were replaced with a variable reference ${CALLERID(num)}, for
instance.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Numbers Vs. Strings

Tokens consisting only of numbers are converted to 'long double' if possible, which are from 80
bits to 128 bits depending on the OS, compiler, and hardware. This means that overflows can
occur when the numbers get above 18 digits (depending on the number of bits involved).
Warnings will appear in the logs in this case.

Conditionals

There is one conditional application - the conditional goto :

1, 2, Got ol f (condi ti on?l abel 1: 1 abel 2)
11>

If condition is true go to labell, else go to label2. Labels are interpreted exactly as in the normal
goto command.

"condition” is just a string. If the string is empty or "0", the condition is considered to be false, if
it's anything else, the condition is true. This is designed to be used together with the expression
syntax described above, eg:

1,2, Gotol f ($[${ CALLERI D(al 1)} = 123456] 22, 1: 3, 1)
11>

Example of use :

s, 2, Set (var a=1)

exten => s, 3, Set (varb=$[${vara} + 2])

exten => s, 4, Set (varc=$[${varb} * 2])

exten => s, 5, Gotol f($[${varc} = 6]?99,1:s,6)
11>

Expression Parsing Errors
Syntax errors are now output with 3 lines.

If the extensions.conf file contains a line like:

s, 6,Cotol f($["${CALLERI D(num}" = "3071234567" & & "${CALLERI D(nane)}" : "Privacy Manager"
]?callerid-liar,s,1:s,7)

11>

You may see an error in /var/log/asterisk/messages like this:

Jul 15 21:27:49 WARNI N 1251240752]: ast_yyerror(): syntax error:
parse error, unexpected TOK _AND, expecting TOK_M

INUS or TOK_LP or TOKEN, | nput:

"3072312154" = "3071234567" & & "Steves Extension" : "Privacy
Manager "

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The log line tells you that a syntax error was encountered. It now also tells you (in grand
standard bison format) that it hit an "AND" (&) token unexpectedly, and that was hoping for for a
MINUS , LP (left parenthesis), or a plain token (a string or number).

The next line shows the evaluated expression, and the line after that, the position of the parser in
the expression when it became confused, marked with the "™ character.

NULL Strings

Testing to see if a string is null can be done in one of two different ways:

_XX.,1,Gotol f($["${cal ledid}" I = ""]23)
11>

or:

_XX., 1, Gotol f($[foo${calledid} != foo]?3)
11>

The second example above is the way suggested by the WIKI. It will work as long as there are
no spaces in the evaluated value.

The first way should work in all cases, and indeed, might now be the safest way to handle this
situation.

Warnings about Expressions

If you need to do complicated things with strings, asterisk expressions is most likely NOT the
best way to go about it. AGI scripts are an excellent option to this need, and make available the
full power of whatever language you desire, be it Perl, C, C++, Cobol, RPG, Java, Snobol, PL/I,
Scheme, Common Lisp, Shell scripts, Tcl, Forth, Modula, Pascal, APL, assembler, etc.

Expression Parser Incompatibilities

The asterisk expression parser has undergone some evolution. It is hoped that the changes will
be viewed as positive.

The "original" expression parser had a simple, hand-written scanner, and a simple bison
grammar. This was upgraded to a more involved bison grammar, and a hand-written scanner
upgraded to allow extra spaces, and to generate better error diagnostics. This upgrade required
bison 1.85, and part of the user community felt the pain of having to upgrade their bison version.

The next upgrade included new bison and flex input files, and the makefile was upgraded to
detect current version of both flex and bison, conditionally compiling and linking the new files if
the versions of flex and bison would allow it.

If you have not touched your extensions.conf files in a year or so, the above upgrades may
cause you some heartburn in certain circumstances, as several changes have been made, and
these will affect asterisk's behavior on legacy extension.conf constructs. The changes have been
engineered to minimize these conflicts, but there are bound to be problems.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The following list gives some (and most likely, not all) of areas of possible concern with "legacy"
extension.conf files:

1. Tokens separated by space(s). Previously, tokens were separated by spaces. Thus, ' 1 + 1 ' would evaluate to the value '2', but '1+1"'
would evaluate to the string '1+1". If this behavior was depended on, then the expression evaluation will break. '1+1" will now evaluate to
'2', and something is not going to work right. To keep such strings from being evaluated, simply wrap them in double quotes: ' "1+1"*

2. The colon operator. In versions previous to double quoting, the colon operator takes the right hand string, and using it as a regex pattern,
looks for it in the left hand string. It is given an implicit dperator at the beginning, meaning the pattern will match only at the beginning of
the left hand string. If the pattern or the matching string had double quotes around them, these could get in the way of the pattern match.
Now, the wrapping double quotes are stripped from both the pattern and the left hand string before applying the pattern. This was done
because it recognized that the new way of scanning the expression doesn't use spaces to separate tokens, and the average regex
expression is full of operators that the scanner will recognize as expression operators. Thus, unless the pattern is wrapped in double
quotes, there will be trouble. For instance, ${VARL1} : (WhoWhat)+ may have have worked before, but unless you wrap the pattern in
double quotes now, look out for trouble! This is better: "${VAR1}" : "(WhoWhat*)+" and should work as previous.*

3. Variables and Double Quotes Before these changes, if a variable's value contained one or more double gquotes, it was no reason for
concern. It is now !

4. LE, GE, NE operators removed. The code supported these operators, but they were not documented. The symbolic operators, =, =, and
1= should be used instead.

5. Added the unary '-' operator. So you can 3+ -4 and get -1.

6. Added the unary '!I' operator, which is a logical complement. Basically, if the string or number is null, empty, or '0’, a '1' is returned.
Otherwise a '0' is returned.

7. Added the '=~' operator, just in case someone is just looking for match anywhere in the string. The only diff with the "' is that match
doesn't have to be anchored to the beginning of the string.

8. Added the conditional operator 'exprl ? true_expr :: false_expr' First, all 3 exprs are evaluated, and if exprl is false, the 'false_expr' is
returned as the result. See above for details.

9. Unary operators '-' and "' were made right associative.

Expression Debugging Hints
There are two utilities you can build to help debug the $[] in your extensions.conf file.

The first, and most simplistic, is to issue the command:

in the top level asterisk source directory. This will build a small executable, that is able to take the
first command line argument, and run it thru the expression parser. No variable substitutions will
be performed. It might be safest to wrap the expression in single quotes...

is an example.

And, in the utils directory, you can say:

and a small program will be built, that will check the file mentioned in the first command line
argument, for any expressions that might be have problems when you move to flex-2.5.31. It was
originally designed to help spot possible incompatibilities when moving from the pre-2.5.31 world
to the upgraded version of the lexer.

But one more capability has been added to check_expr, that might make it more generally useful.
It now does a simple minded evaluation of all variables, and then passes the $[] exprs to the
parser. If there are any parse errors, they will be reported in the log file. You can use check_expr
to do a quick sanity check of the expressions in your extensions.conf file, to see if they pass a
crude syntax check.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The "simple-minded" variable substitution replaces ${varname} variable references with '555'".
You can override the 555 for variable values, by entering in var=val arguments after the filename
on the command line. So...

will substitute any ${CALLERID(num)} variable references with 3075551212, any
${DIALSTATUS} variable references with ' TORTURE', and any ${EXTEN} references with '121".
If there is any fancy stuff going on in the reference, like ${EXTEN:2}, then the override will not
work. Everything in the ${...} has to match. So, to substitute ${EXTEN:2} references, you'd best
say:

on stdout, you will see something like:

K — $["${DI ALSTATUS}" = "TORTURE" | "${D ALSTATUS}" = "DONTCALL"]
at line 416

In the expr2_log file that is generated, you will see:

line 416, evaluation of $["TORTURE' = "TORTURE" | "TORTURE' =
"DONTCALL"] result: 1

check_expr is a very simplistic algorithm, and it is far from being guaranteed to work in all cases,
but it is hoped that it will be useful.

Asterisk standard channel variables

There are a number of variables that are defined or read by Asterisk. Here is a list of them. More
information is available in each application's help text. All these variables are in UPPER CASE
only.

Variables marked with a * are builtin functions and can't be set, only read in the dialplan. Writes
to such variables are silently ignored.

${CDR(accountcode)} * - Account code (if specified)

${BLINDTRANSFER} - The name of the channel on the other side of a blind transfer
${BRIDGEPEER} - Bridged peer

${BRIDGEPVTCALLID} - Bridged peer PVT call ID (SIP Call ID if a SIP call)
${CALLERID(ani)} * - Caller ANI (PRI channels)

${CALLERID(ani2)} * - ANI2 (Info digits) also called Originating line information or OLI
${CALLERID(all)} * - Caller ID

${CALLERID(dnid)} * - Dialed Number Identifier

${CALLERID(name)} * - Caller ID Name only

${CALLERID(num)} * - Caller ID Number only

${CALLERID(rdnis)} * - Redirected Dial Number ID Service

${CALLINGANI2} * - Caller ANI2 (PRI channels)

${CALLINGPRES} * - Caller ID presentation for incoming calls (PRI channels)
${CALLINGTNS} * - Transit Network Selector (PRI channels)

${CALLINGTON} * - Caller Type of Number (PRI channels)

${CHANNEL} * - Current channel name

${CONTEXT} * - Current context

${DATETIME} * - Current date time in the format: DDMMYYYY-HH:MM:SS (Deprecated; use

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

${STRFTIME(${EPOCH},,%d%m%Y-%H:%M:%S)})

${DB_RESULT} - Result value of DB_EXISTS() dial plan function

${EPOCH} * - Current unix style epoch

${EXTEN]} * - Current extension

${ENV(VAR)} - Environmental variable VAR

${GOTO_ON_BLINDXFR} - Transfer to the specified context/extension/priority after a blind transfer (use ~ characters in place of | to
separate context/extension/priority when setting this variable from the dialplan)
${HANGUPCAUSE} * - Asterisk cause of hangup (inbound/outbound)

${HINT} * - Channel hints for this extension

${HINTNAME} * - Suggested Caller*ID name for this extension

${INVALID_EXTEN]} - The invalid called extension (used in the "i" extension)

${LANGUAGE} * - Current language (Deprecated; use ${LANGUAGE()})

${LEN(VAR)} - String length of VAR (integer)

${PRIORITY} * - Current priority in the dialplan

${PRIREDIRECTREASON} - Reason for redirect on PRI, if a call was directed
${TIMESTAMP} * - Current date time in the format: YYYYMMDD-HHMMSS (Deprecated; use
${STRFTIME(${EPOCH},,%Y%m%d-%H%M%S)})

${TRANSFER_CONTEXT} - Context for transferred calls

${FORWARD_CONTEXT} - Context for forwarded calls

${DYNAMIC_PEERNAME} - The name of the channel on the other side when a dynamic feature is used.
${DYNAMIC_FEATURENAME} The name of the last triggered dynamic feature.
${UNIQUEID} * - Current call unique identifier

${SYSTEMNAME} * - value of the systemname option of asterisk.conf

${ENTITYID} * - Global Entity ID set automatically, or from asterisk.conf

Application return values

Many applications return the result in a variable that you read to get the result of the application.
These status fields are unique for each application. For the various status values, see each
application's help text.

${AGISTATUS} * agi()

${AQMSTATUS} * addqueuemember()
${AVAILSTATUS} * chanisavail()
${CHECKGROUPSTATUS} * checkgroup()
${CHECKMD5STATUS} * checkmd5()
${CPLAYBACKSTATUS]} * controlplayback()
${DIALSTATUS} * dial()

${DBGETSTATUS} * dbget()
${ENUMSTATUS} * enumlookup()
${HASVMSTATUS} * hasnewvoicemail()
${LOOKUPBLSTATUS} * lookupblacklist()
${OSPAUTHSTATUS} * ospauth()
${OSPLOOKUPSTATUS]} * osplookup()
${OSPNEXTSTATUS} * ospnext()
${OSPFINISHSTATUS} * ospfinish()
${PARKEDAT} * parkandannounce()
${PLAYBACKSTATUS} * playback()
${PQMSTATUS} * pausequeuemember()
${PRIVACYMGRSTATUS]} * privacymanager()
${QUEUESTATUS} * queue()
${RQMSTATUS} * removequeuemember()
${SENDIMAGESTATUS} * sendimage()
${SENDTEXTSTATUS} * sendtext()
${SENDURLSTATUS} * sendurl()
${SYSTEMSTATUS} * system()
${TRANSFERSTATUS} * transfer()
${TXTCIDNAMESTATUS} * txtcidname()
${UPQMSTATUS} * unpausequeuemember()
${VMSTATUS]} * voicmail()
${VMBOXEXISTSSTATUS} * vmboxexists()
${WAITSTATUS} * waitforsilence()

Various application variables

${ CURL} - Resulting page content for CURL()

${ ENUM - Result of application EnunLookup()

${ EXI TCONTEXT} - Context to exit to in IVR menu (Backgr ound()) orin the Ret ryDi al () application
${ MONI TOR} - Set to "TRUE" if the channel is/has been monitored (app monitor())

${ MONI TOR_EXEC} - Application to execute after monitoring a call

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

${ MONI TOR_EXEC_ARGS} - Arguments to application

${ MONI TOR_FI LENAME} - File for monitoring (recording) calls in queue

${ QUEUE_PRI O} - Queue priority

${ QUEUE_MAX_PENALTY?} - Maximum member penalty allowed to answer caller

${ QUEUE_M N_PENALTY?} - Minimum member penalty allowed to answer caller

${ QUEUESTATUS} - Status of the call, one of: (TIMEOUT | FULL | JOINEMPTY | LEAVEEMPTY | JOINUNAVAIL | LEAVEUNAVAIL)
${ QUEUEPCSI TI ON} - When a caller is removed from a queue, his current position is logged in this variable. If the value is 0, then this
means that the caller was serviced by a queue member. If non-zero, then this was the position in the queue the caller was in when he
left.

${ RECORDED_FI LE} - Recorded file in record()

${ TALK_DETECTED} - Result from talkdetect()

${ TOUCH_MONI TOR} - The filename base to use with Touch Monitor (auto record)

${ TOUCH_MONI TOR_PREF} - The prefix for automonitor recording filenames.

${ TOUCH_MONI TOR_FORMAT} - The audio format to use with Touch Monitor (auto record)

${ TOUCH_MONI TOR_QUTPUT} - Recorded file from Touch Monitor (auto record)

${ TOUCH_MONI TOR_MESSAGE_START} - Recorded file to play for both channels at start of monitoring session

${ TOUCH_MONI TOR_MESSAGE_STOP} - Recorded file to play for both channels at end of monitoring session

${ TOUCH_M XMONI TOR} - The filename base to use with Touch MixMonitor (auto record)

${ TOUCH_M XMONI TOR_FORMAT} - The audio format to use with Touch MixMonitor (auto record)

${ TOUCH_M XMONI TOR_QUTPUT} - Recorded file from Touch MixMonitor (auto record)

${ TXTCI DNAME} - Result of application TXTCIDName

${ VPB_GETDTMF} - chan_vpb

MeetMe Channel Variables

${MEETME_RECORDINGFILE} - Name of file for recording a conference with the "r" option

${MEETME_RECORDINGFORMAT} - Format of file to be recorded

${MEETME_EXIT_CONTEXT} - Context for exit out of meetme meeting

${MEETME_AGI_BACKGROUND} - AGI script for Meetme (DAHDI only)

${MEETMESECS]} * - Number of seconds a user participated in a MeetMe conference

${CONF_LIMIT_TIMEOUT_FILE} - File to play when time is up. Used with the L() option.

${CONF_LIMIT_WARNING_FILE} - File to play as warning if 'y' is defined. The default is to say the time remaining. Used with the L()
option.

* ${MEETMEBOOKID} * - This variable exposes the bookid column for a realtime configured conference bridge.

VoiceMail Channel Variables

${VM_CATEGORY} - Sets voicemail category

${VM_NAME} * - Full name in voicemail

${VM_DUR} * - Voicemail duration

${VM_MSGNUM} * - Number of voicemail message in mailbox
${VM_CALLERID} * - Voicemail Caller ID (Person leaving vm)
${VM_CIDNAME} * - Voicemail Caller ID Name
${VM_CIDNUM} * - Voicemail Caller ID Number

${VM_DATE} * - Voicemail Date

${VM_MESSAGEFILE} * - Path to message left by caller

VMAuthenticate Channel Variables

® ${AUTH_MAILBOX} * - Authenticated mailbox
®* ${AUTH_CONTEXT} * - Authenticated mailbox context

DUNDiLookup Channel Variables

* ${DUNDTECH} * - The Technology of the result from a call to DUNDiLookup()
* ${DUNDDEST} * - The Destination of the result from a call to DUNDiLookup()

chan_dahdi Channel Variables

* ${ANI2} * - The ANI2 Code provided by the network on the incoming call. (ie, Code 29 identifies call as a Prison/Inmate Call)
* ${CALLTYPE} * - Type of call (Speech, Digital, etc)

${CALLEDTON} * - Type of number for incoming PRI extension i.e. O=unknown, 1=international, 2=domestic, 3=net_specific,
4=subscriber, 6=abbreviated, 7=reserved

${CALLINGSUBADDR} * - Caller's PRI Subaddress

${FAXEXTEN} * - The extension called before being redirected to "fax"

${PRIREDIRECTREASON} * - Reason for redirect, if a call was directed

${SMDI_VM_TYPE} * - When an call is received with an SMDI message, the 'type' of message 'b' or 'u’

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

chan_sip Channel Variables

${SIPCALLID} * - SIP Call-ID: header verbatim (for logging or CDR matching)
${SIPDOMAIN} * - SIP destination domain of an inbound call (if appropriate)
${SIPFROMDOMAIN} - Set SIP domain on outbound calls

${SIPUSERAGENT} * - SIP user agent (deprecated)

${SIPURI} * - SIP uri

${SIP_MAX_FORWARDS} - Set the value of the Max-Forwards header for outbound call
${SIP_CODEC} - Set the SIP codec for an inbound calll
${SIP_CODEC_INBOUND} - Set the SIP codec for an inbound call
${SIP_CODEC_OUTBOUND} - Set the SIP codec for an outbound call
${SIP_URI_OPTIONS} * - additional options to add to the URI for an outgoing call
${RTPAUDIOQOS} - RTCP QoS report for the audio of this call
${RTPVIDEOQOS} - RTCP QoS report for the video of this call

chan_agent Channel Variables

* ${AGENTMAXLOGINTRIES} - Set the maximum number of failed logins

* ${AGENTUPDATECDR} - Whether to update the CDR record with Agent channel data
* ${AGENTGOODBYE} - Sound file to use for "Good Bye" when agent logs out

* ${AGENTACKCALL} - Whether the agent should acknowledge the incoming call

* ${AGENTAUTOLOGOFF} - Auto logging off for an agent

* ${AGENTWRAPUPTIME} - Setting the time for wrapup between incoming calls

* ${AGENTNUMBER} * - Agent number (username) set at login

* ${AGENTSTATUS} * - Status of login (fail | on | off)

* ${AGENTEXTEN} * - Extension for logged in agent

Dial Channel Variables

${DIALEDPEERNAME} * - Dialed peer name

${DIALEDPEERNUMBERY} * - Dialed peer number

${DIALEDTIME} * - Time for the call (seconds). Is only set if call was answered.

${ANSWEREDTIME} * - Time from answer to hangup (seconds)

${DIALSTATUS} * - Status of the call, one of: (CHANUNAVAIL | CONGESTION | BUSY | NOANSWER | ANSWER | CANCEL |
DONTCALL | TORTURE)

${DYNAMIC_FEATURES} * - The list of features (from the [applicationmap] section of features.conf) to activate during the call, with
feature names separated by '#' characters

${LIMIT_PLAYAUDIO_CALLER} - Soundfile for call limits

${LIMIT_PLAYAUDIO_CALLEE} - Soundfile for call limits

${LIMIT_WARNING_FILE} - Soundfile for call limits

${LIMIT_TIMEOUT_FILE} - Soundfile for call limits

${LIMIT_CONNECT_FILE} - Soundfile for call limits

${OUTBOUND_GROUP} - Default groups for peer channels (as in SetGroup) * See "show application dial" for more information

Chanisavail() Channel Variables

® 3${AVAILCHAN} * - the name of the available channel if one was found
* ${AVAILORIGCHAN} * - the canonical channel name that was used to create the channel
* ${AVAILSTATUS} * - Status of requested channel

Dialplan Macros Channel Variables

®* ${MACRO_EXTEN} * - The calling extensions
* ${MACRO_CONTEXT} * - The calling context
* ${MACRO_PRIORITY} * - The calling priority
* ${MACRO_OFFSET} - Offset to add to priority at return from macro

ChanSpy Channel Variables
* ${SPYGROUP} * - A "' (colon) separated list of group names. (To be set on spied on channel and matched against the g(grp) option)
Open Settlement Protocol (OSP) Channel Variables

* ${OSPINHANDLE} - The inbound call OSP transaction handle.
® ${OSPINTOKEN} - The inbound OSP token.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

${OSPINTIMELIMIT} - The inbound call duration limit in seconds.
${OSPINPEERIP} - The last hop IP address.

${OSPINNETWORKID} - The inbound source network ID.
${OSPINNPRN} - The inbound routing number.

${OSPINNPCIC} - The inbound carrier identification code.
${OSPINNPDI} - The inbound number portability database dip indicator.
${OSPINSPID} - The inbound service provider identity.
${OSPINOCN} - The inbound operator company number.
${OSPINSPN} - The inbound service provider name.
${OSPINALTSPN} - The inbound alternate service provider name.
${OSPINMCC} - The inbound mobile country code.

${OSPINMNC} - The inbound mobile network code.
${OSPINDIVUSER} - The inbound Diversion header user part.
${OSPINDIVHOST} - The inbound Diversion header host part.
${OSPINTOHOST} - The inbound To header host part.
${OSPINCUSTOMINFOR} - The inbound custom information. Where n is the index beginning with 1 upto 8.
${OSPOUTHANDLE} - The outbound call OSP transaction handle.
${OSPOUTTOKEN]} - The outbound OSP token.
${OSPOUTTIMELIMIT} - The outbound call duration limit in seconds.
${OSPOUTTECH]} - The outbound channel technology.
${OSPOUTCALLIDTYPES} - The outbound Call-ID types.
${OSPOUTCALLID} - The outbound Call-ID. Only for H.323.
${OSPDESTINATION} - The destination IP address.
${OSPDESTREMAILS} - The number of remained destinations.
${OSPOUTCALLING} - The outbound calling number.
${OSPOUTCALLED} - The outbound called number.
${OSPOUTNETWORKID} - The outbound destination network ID.
${OSPOUTNPRN} - The outbound routing number.
${OSPOUTNPCIC} - The outbound carrier identification code.
${OSPOUTNPDI} - The outbound number portability database dip indicator.
${OSPOUTSPID} - The outbound service provider identity.
${OSPOUTOCN} - The outbound operator company number.
${OSPOUTSPN} - The outbound service provider name.
${OSPOUTALTSPN} - The outbound alternate service provider name.
${OSPOUTMCC} - The outbound mobile country code.
${OSPOUTMNC} - The outbound mobile network code.
${OSPDIALSTR} - The outbound Dial command string.
${OSPINAUDIOQOS]} - The inbound call leg audio QoS string.
${OSPOUTAUDIOQOS} - The outbound call leg audio QoS string.

Digit Manipulation Channel Variables

* ${ REDI RECTI NG_CALLEE_SEND MACROG
Macro to call before sending a redirecting update to the callee

* ${ REDI RECTI NG_CALLEE_SEND_MACRO ARGS}
Arguments to pass to ${REDIRECTING_CALLEE_SEND_MACRO}

* ${ REDI RECTI NG_CALLER SEND MACRC}
Macro to call before sending a redirecting update to the caller

* ${REDI RECTI NG_CALLER_SEND_MACRO_ARGS}
Arguments to pass to ${REDIRECTING_CALLER_SEND_MACRO}

® ${ CONNECTED LI NE_CALLEE_SEND MACRC}
Macro to call before sending a connected line update to the callee

® ${ CONNECTED_ LI NE_CALLEE_SEND_MACRO_ARGS}
Arguments to pass to $§{CONNECTED_LINE_CALLEE_SEND_MACRO}

® ${ CONNECTED LI NE_CALLER_SEND_MACRC
Macro to call before sending a connected line update to the caller

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® ${CONNECTED LI NE_CALLER SEND MACRO_ARGS}
Arguments to pass to ${CONNECTED_LINE_CALLER_SEND_MACRO}

Distributed Universal Number Discovery (DUNDI)
Top-level page for all things DUNDI

Introduction to DUNDiI

http://www.dundi.com

Mark Spencer, Digium, Inc.

DUND:I is essentially a trusted, peer-to-peer system for being able to call any phone number from
the Internet. DUNDI works by creating a network of nodes called the "DUNDi E.164 Trust Group”
which are bound by a common peering agreement known as the General Peering Agreement or
GPA. The GPA legally binds the members of the Trust Group to provide good-faith accurate
information to the other nodes on the network, and provides standards by which the community
can insure the integrity of the information on the nodes themselves. Unlike ENUM or similar
systems, DUNDI is explicitly designed to preclude any necessity for a single centralized system
which could be a source of fees, regulation, etc.

Much less dramatically, DUNDi can also be used within a private enterprise to share a dialplan
efficiently between multiple nodes, without incurring a risk of a single point of failure. In this way,
administrators can locally add extensions which become immediately available to the other
nodes in the system.

For more information visit http://www.dundi.com
DUNDIQUERY and DUNDIRESULT

The DUNDIQUERY and DUNDIRESULT dialplan functions will let you initiate a DUNDi query
from the dialplan, see how many results there are, and access each one. Here is some example
usage:

1, 1, Set (1 D=${ DUNDI QUERY(1, dundi _test, b)})

exten => 1, n, Set (NUM=${ DUNDI RESULT(${I D}, get num })

exten => 1,n, NoOp(There are ${NUM results)

exten => 1, n, Set (X=1)

exten => 1,n, Wil e($[${X} <= exten="exten" ${nun}])="${NUM])"> 1,n, NoQp(Result ${X} is
${ DUNDI RESULT(${1D}, ${X})})

exten => 1,n, Set (X=$[${X} + 1])

exten => 1, n, EndWile

11></=>

DUND:i Peering Agreement

DI G UM GENERAL PEERI NG AGREEMENT (TM

Version 1.0.0, Septenber 2004

Copyright (C) 2004 Digium Inc.

150 West Park Loop Suite 100, Huntsville, AL 35806 USA

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.dundi.com
http://www.dundi.com

Everyone is permitted to copy and distribute conplete verbatim
copies of this General Peering Agreenent provided it is not nodified
in any manner.

D G UM GENERAL PEERI NG AGREEMENT
PREAMBLE

For nost of the history of tel ecomrunications, the power of being
able to | ocate and comruni cate with anot her person in a system be
it across a hall or around the world, has al ways centered around a
centralized authority -- froma |ocal PBX adm nistrator to regi ona
and national RBOCs, generally requiring fees, taxes or regulation.
By contrast, DUNDI is a technol ogy devel oped to provide users the
freedomto comuni cate with each other w thout the necessity of any
centralized authority. This General Peering Agreenent ("GPA") is
used by individual parties (each, a "Participant”) to allowthemto
build the E164 trust group for the DUND protocol.

To protect the useful ness of the E164 trust group for those who use
it, while keeping the systemwholly decentralized, it is necessary
to replace nany of the responsibilities generally afforded to a
conpany or governnment agency, with a set of responsibilities

i npl emented by the parties who use the system thenselves. It is the
goal of this docunent to provide all the protections necessary to
keep the DUNDI E164 trust group useful and reliable.

The Participants wish to protect conpetition, pronote innovation and
val ue added services and nmake this service val uabl e both
comercially and non-comrercially. To that end, this GPA provides
special ternms and conditions outlining sone perm ssible and

non- perm ssi bl e revenue sources.

This GPA is independent of any software |license or other license
agreenent for a program or technol ogy enpl oying the DUND protocol
For exanple, the inplenentation of DUNDI used by Asterisk is covered
under a separate |license. Each Participant is responsible for
conpliance with any |licenses or other agreenents governing use of
such program or technol ogy that they use to peer.

You do not have to execute this GPA to use a program or technol ogy

enpl oyi ng the DUNDi protocol, however if you do not execute this
GPA, you will not be able to peer using DUNDI and the E164 context

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

wi th anyone who is a nmenber of the trust group by virtue of their
havi ng executed this GPA with anot her menber.

The parties to this GPA agree as foll ows:

O. DEFINITIONS. As used herein, certain terns shall be defined as
foll ows:

(a) The term"DUNDI " nmeans the DUNDi protocol as published by
Digium Inc. or its successor in interest with respect to the DUNDi
prot ocol specification.

(b) The terns "E. 164" and "E164" nean | TU- T specification E. 164 as
publ i shed by the International Tel ecomrunications Union (ITU) in
May, 1997.

(c) The term "Service" refers to any communi cation facility (e.g.,
t el ephone, fax, nodem etc.), identified by an E. 164-conpati bl e
nunber, and assigned by the appropriate authority in that
jurisdiction.

(d) The term "Egress Gateway" refers an Internet facility that
provi des a conmuni cations path to a Service or Services that nmay not
be directly addressable via the Internet.

(e) The term"Route" refers to an Internet address, policies, and

ot her characteristics defined by the DUNDi protocol and associ at ed
with the Service, or the Egress Gateway which provides access to the
speci fied Service.

(f) The term "Propagate” means to accept or transmt Service and/or
Egress Gateway Routes only using the DUND protocol and the DUND
context "el64" without regard to case, and does not apply to the
exchange of information using any other protocol or context.

(g) The term "Peering Systent neans the network of systens that
Pr opagat e Rout es.

(h) The term "Subscriber” neans the owner of, or sonmeone who
contracts to receive, the services identified by an E. 164 nunber.

(i) The term "Authorizing Individual" neans the Subscriber to a
nunber who has authorized a Participant to provide Routes regarding

their services via this Peering System

(j) The term "Route Authority"” refers to a Participant that provides

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

an original source of said Route within the Peering System Routes
are propagated fromthe Route Authorities through the Peering System
and may be cached at internediate points. There nmay be nultiple
Route Authorities for any Service.

(k) The term"Participant” (introduced above) refers to any menber
of the Peering System

(1) The term"Service Provider" refers to the carrier (e.qg.
exchange carrier, Internet Tel ephony Service Provider, or other
reseller) that provides conmunication facilities for a particul ar
Service to a Subscriber, Custoner or other End User.

(m The term"Weight" refers to a nunmeric quality assigned to a
Route as per the DUNDi protocol specification. The current Wi ght
definitions are shown in Exhibit A

1. PEERING The undersigned Participants agree to Propagate Routes
with each other and any ot her nenber of the Peering System and
further agree not to Propagate DUNDI Routes with a third party

unl ess they have first have executed this GPA (in its unnodified
form with such third party. The Participants further agree only to
Propagate Routes with Partici pants whomthey reasonably believe to
be honoring the terns of the GPA. Participants may not insert,
remove, anend, or otherw se nodify any of the ternms of the GPA

2. ACCEPTABLE USE POLI CY. The DUNDi protocol contains information
that reflect a Subscriber's or Egress Gateway's decisions to receive
calls. In addition to the ternms and conditions set forth in this
GPA, the Participants agree to honor the intent of restrictions
encoded in the DUNDi protocol. To that end, Participants agree to

t he foll ow ng:

(a) A Participant may not utilize or permt the utilization of
Routes for which the Subscriber or Egress Gateway provider has

i ndi cated that they do not wish to receive "Unsolicited Calls" for
t he purpose of meking an unsolicited phone call on behalf of any
party or organization.

(b) A Participant may not utilize or permt the utilization of
Rout es whi ch have indicated that they do not wish to receive
"Unsolicited Conmercial Calls" for the purpose of nmaking an
unsol icited phone call on behalf of a commercial organization.

(c) A Participant may never utilize or permt the utilization of any
DUNDi route for the purpose of maki ng harassi ng phone calls.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

(d) A Party may not utilize or permt the utilization of DUND
provi ded Routes for any systematic or randomcalling of nunbers
(e.g., for the purpose of |locating facsimle, nodem services, or
systematic tel emarketing).

(e) Initial control signaling for all comunication sessions that
utilize Routes obtained fromthe Peering System nust be sent froma
menber of the Peering Systemto the Service or Egress Gateway
identified in the selected Route. For exanple, 'SIP INVITES and

| AX2 "NEW commands nust be sent fromthe requesting DUNDI node to
the term nating Service.

(f) A Participant may not disclose any specific Route, Service or
Partici pant contact information obtained fromthe Peering Systemto
any party outside of the Peering System except as a by-product of
facilitating comunication in accordance with section 2e (e.g.,
phone books or other databases nmay not be published, but the
Internet addresses of the Egress Gateway or Service does not need to
be obfuscated.)

(g) The DUNDI Protocol requires that each Participant include valid
contact information about itself (including informtion about nodes
connected to each Participant). Participants may use or disclose the
contact information only to ensure enforcenment of |egal furtherance
of this Agreenent.

3. ROUTES. The Participants shall only propagate valid Routes, as
defined herein, through the Peering System regardless of the
original source. The Participants may only provide Routes as set
forth below, and then only if such Participant has no good faith
reason to believe such Route to be invalid or unauthorized.

(a) A Participant may provide Routes if each Route has as its
original source another nenber of the Peering System who has duly
executed the GPA and such Routes are provided in accordance with
this Agreenent; provided that the Routes are not nodified (e.qg.
with regards to existence, destination, technology or Wight); or

(b) A Participant may provide Routes for Services with any Wi ght
for which it is the Subscriber; or

(c) A Participant may provide Routes for those Services whose
Subscri ber has authorized the Participant to do so, provided that
the Participant is able to confirmthat the Authorizing Individua
is the Subscriber through:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

i. awitten statement of ownership fromthe Authorizing Individual,
whi ch the Participant believes in good faith to be accurate (e.g., a
phone bill with the name of the Authorizing Individual and the
nunber in question); or

ii. the Participant's own direct personal know edge that the
Aut hori zing Individual is the Subscriber.

(d) A Participant may provide Routes for Services, with Wight in

accordance with the Current DUNDi Specification, if it can in good
faith provide an Egress Gateway to that Service on the traditiona

t el ephone network without cost to the calling party.

4. REVOCATION. A Participant nust provide a free, easily accessible
nmechani sm by which a Subscri ber may revoke pernmission to act as a
Route Authority for his Service. A Participant nust stop acting as a
Route Authority for that Service within 7 days after:

(a) receipt of a revocation request;
(b) receiving other notice that the Service is no |onger valid; or

(c) determ nation that the Subscriber's information is no |onger
accurate (including that the Subscriber is no | onger the service
owner or the service owner's authorized del egate).

5. SERVI CE FEES. A Participant may charge a fee to act as a Route
Aut hority for a Service, with any Weight, provided that no
Participant may charge a fee to propagate the Route received through
t he Peering System

6. TOLL SERVICES. No Participant may provide Routes for any Services
that require paynent fromthe calling party or their custoner for
comruni cation with the Service. Nothing in this section shal

prohibit a Participant fromproviding routes for Services where the
calling party may later enter into a financial transaction with the
called party (e.g., a Participant may provide Routes for calling
cards services).

7. QUALITY. A Participant may not intentionally inpair comrunication
using a Route provided to the Peering System (e.g. by addi ng del ay,
adverti senents, reduced quality). If for any reason a Participant is
unable to deliver a call via a Route provided to the Peering System
that Participant shall return out-of-band Network Congestion
notification (e.g. "503 Service Unavailable" with SIP protocol or

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

" CONGESTI ON' with | AX protocol).

8. PROTOCOL COWPLI ANCE. Participants agree to Propagate Routes in
strict conpliance with current DUND protocol specifications.

9. ADM NI STRATI VE FEES. A Participant may charge (but is not
required to charge) another Participant a reasonable fee to cover
adm ni strative expenses incurred in the execution of this Agreenent.
A Participant may not charge any fee to continue the relationship or
to provide Routes to another Participant in the Peering System

10. CALLER I DENTIFI CATION. A Participant will nake a good faith
effort to ensure the accuracy and appropriate nature of any caller
identification that it transmts via any Route obtained fromthe
Peering System Caller identification shall at |east be provided as
a valid E. 164 nunber.

11. COWPLI ANCE W TH LAWS. The Participants are solely responsible
for determning to what extent, if any, the obligations set forth in
this GPA conflict with any laws or regulations their region. A
Partici pant may not provide any service or otherw se use DUNDI under
this GPA if doing so is prohibited by |aw or regulation, or if any

| aw or regulation inposes requirenents on the Participant that are
inconsistent with the terns of this GPA or the Acceptable Use
Pol i cy.

12. WARRANTY. EACH PARTI Cl PANT WARRANTS TO THE OTHER PARTI Cl PANTS
THAT | T MADE, AND W LL CONTI NUE TO MAKE, A GOCD FAI TH EFFORT TO
AUTHENTI CATE OTHERS | N THE PEERI NG SYSTEM AND TO PROVI DE ACCURATE

| NFORMATI ON | N ACCORDANCE W TH THE TERMS OF TH S GPA. THI S WARRANTY
'S MADE BETWEEN THE PARTI Cl PANTS, AND THE PARTI Cl PANTS MAY NOT
EXTEND THI S WARRANTY TO ANY NON- PARTI Cl PANT | NCLUDI NG END- USERS.

13. DI SCLAI MER OF WARRANTI ES. THE PARTI Cl PANTS UNDERSTAND AND AGREE
THAT ANY SERVI CE PROVI DED AS A RESULT OF THIS GPA IS "AS | S." EXCEPT
FOR THOSE WARRANTI ES OTHERW SE EXPRESSLY SET FORTH HEREIN, THE
PARTI Cl PANTS DI SCLAI M ANY REPRESENTATI ONS OR WARRANTI ES OF ANY KI ND
OR NATURE, EXPRESS OR | MPLI ED, AS TO THE CONDI TI ON, VALUE OR
QUALI TI ES OF THE SERVI CES PROVI DED HEREUNDER, AND SPECI FI CALLY

DI SCLAI M ANY REPRESENTATI ON OR WARRANTY OF MERCHANTABI LI TY,

SU TABI LI TY OR FI TNESS FOR A PARTI CULAR PURPOSE OR AS TO THE
CONDI TI ON OR WORKMVANSHI P THEREOF, OR THE ABSENCE OF ANY DEFECTS
THEREI'N, WHETHER LATENT OR PATENT, | NCLUDI NG ANY WARRANTI ES ARI SI NG
FROM A COURSE OF DEALI NG USAGE OR TRADE PRACTI CE. EXCEPT AS
EXPRESSLY PROVI DED HEREI N, THE PARTI Cl PANTS EXPRESSLY DI SCLAI M ANY
REPRESENTATI ONS OR WARRANTI ES THAT THE PEERI NG SERVI CE W LL BE

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CONTI NUOUS, UNI NTERRUPTED OR ERROR- FREE, THAT ANY DATA SHARED OR
OTHERW SE MADE AVAI LABLE W LL BE ACCURATE OR COWPLETE OR OTHERW SE
COVPLETELY SECURE FROM UNAUTHORI ZED ACCESS

14. LIM TATION OF LIABILITIES. NO PARTI Cl PANT SHALL BE LI ABLE TO ANY
OTHER PARTI Cl PANT FOR | NCI DENTAL, | NDI RECT, CONSEQUENTI AL, SPECI AL,
PUNI TI VE OR EXEMPLARY DAMAGES OF ANY KI ND (I NCLUDI NG LOST REVENUES
OR PROFI TS, LOSS OF BUSI NESS OR LOSS OF DATA) | N ANY WAY RELATED TO
TH S GPA, WHETHER | N CONTRACT OR I N TORT, REGARDLESS OF WHETHER SUCH
PARTI CI PANT WAS ADVI SED OF THE PCSSI Bl LI TY THEREOF

15. END- USER AGREEMENTS. The Partici pants nmay i ndependently enter
into agreenents with end-users to provide certain services (e.qg.
fees to a Subscriber to originate Routes for that Service). To the
extent that provision of these services enploys the Peering System

the Parties will include in their agreements with their end-users
ternms and conditions consistent with the terms of this GPA with
respect to the exclusion of warranties, limtation of liability and

Acceptable Use Policy. In no event may a Partici pant extend the
warranty described in Section 12 in this GPA to any end-users.

16. | NDEMNI FI CATI ON. Each Partici pant agrees to defend, indemify
and hold harm ess the other Participant or third-party beneficiaries
to this GPA (including their affiliates, successors, assigns, agents
and representatives and their respective officers, directors and
enpl oyees) from and agai nst any and all actions, suits, proceedings,
i nvestigations, demands, clains, judgnents, liabilities,

obligations, liens, |osses, damages, expenses (including, wthout
limtation, attorneys' fees) and any other fees arising out of or
relating to (i) personal injury or property damage caused by that
Participant, its enpl oyees, agents, servants, or other
representatives; (ii) any act or omssion by the Participant, its
enpl oyees, agents, servants or other representatives, including, but
not limted to, unauthorized representations or warranties nade by
the Participant; or (iii) any breach by the Participant of any of
the terns or conditions of this GPA

17. THI RD PARTY BENEFI Cl ARIES. This GPA is intended to benefit those
Partici pants who have executed the GPA and who are in the Peering
System It is the intent of the Parties to this GPAto give to those
Participants who are in the Peering System standing to bring any
necessary |legal action to enforce the terns of this GPA

18. TERM NATION. Any Participant may termi nate this GPA at any tine,

with or without cause. A Participant that term nates nust
i mredi ately cease to Propagate.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

19. CHO CE OF LAW This GPA and the rights and duties of the Parties
hereto shall be construed and determ ned in accordance with the
internal laws of the State of New York, United States of America,

wi thout regard to its conflict of laws principles and w t hout
application of the United Nations Convention on Contracts for the
International Sale of Goods.

20. DI SPUTE RESOLUTI ON. Unl ess otherwi se agreed in witing, the

excl usive procedure for handling disputes shall be as set forth
herein. Notw thstanding such procedures, any Participant nmay, at any
time, seek injunctive relief in addition to the process descri bed
bel ow.

(a) Prior to nediation or arbitration the disputing Participants
shal | seek informal resolution of disputes. The process shall be
initiated with witten notice of one Participant to the other
describing the dispute with reasonable particularity followed with a
witten response wthin ten (10) days of receipt of notice. Each
Participant shall pronptly designate an executive with requisite
authority to resolve the dispute. The inf